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The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space _ . _ ..
Center and local industry to actively support research in the computing and
The information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an mtegrated program of research

R[CI S ____ inadvanced data processing technology needed for JSC's main missions, including . .+
L administrative, engineering and science responsibilities. JSC agreed and entered info g
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to =
C 0 ncep t jointly plan and execute such research through RICIS. Additionally, under
Cooperatwe Agrecmem NCC 9-16, computing and educational facﬂmes are shared

The mission of RICIS is to conduct, coordma!e and disseminate research on 'é
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the “gateway” concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, rescarchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
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FINAL REPORT
FOR THE RESEARCH IN SOFTWARE ALLOCATION FOR ADVANCED
MISSION COMMUNICATIONS AND TRACKING SYSTEMS

EXECUTIVE SUMMARY

An assessment of the planned processing hardware and software/firmware for the
Communications and Tracking System of the Space Station Freedom (SSF) was performed
by Southwest Research Institute. The intent of the assessment was to determine the
optimum distribution of software/firmware in the processing hardware for maximum
throughput with minimum required memory. As a product of the assessment process an

assessment methodology was to be developed that could be used for similar assessments of
future manned spacecraft system designs.

The assessment process was hampered by changing requirements for the Space Station.
As a result, the initial objective of determining the optimum software/firmware allocation
was not fulfilled, but several useful conclusions and recommendations resulted from the
assessment. It was concluded that the assessment process would not be completely
successful for a system with changing requirements. It was also concluded that memory
requirements and hardware requirements were being modified to fit as a consequence of the
change process, and although throughput could not be quantitized, potential problem areas
could be identified. Finally, inherent flexibility of the system design was essential for the
success of a system design with changing requirements.

Recommendations resulting from the assessment included development of common
software for some embedded controller functions, reduction of embedded processor
requirements by hardwiring some ORUs to make better use of processor capabilities, and
improvement in communications between software development personnel to enhance the
integration process. .

Lastly, a critical observation was made regarding the software development process for
the SSF. It was noted that the various hardware/software integration tasks did not appear

to be addressed in the design process to the degree necessary for successful satisfaction of
the system requirements.
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1.0 INTRODUCTION

Because space” systems have a fixed quantity of hardware resources available, the
resources must be adequate for all’ foreseeable requirements. In many cases, the hardware
contains one or more processors controlled by software that actually determines how well
the hardware meets the operational requirements for the spacecraft. This software must be
adequately accommodated in available spacecraft processor memory.

To accomplish this, a method is needed to efficiently allocate the software to
available, yet limited, processor memory. This is a general need for all space processor-
controlled systems, but for manned missions is it somewhat different, because the hardware
can be modified in space. To develop an assessment method that would efficiently allocate
software to the available memory for manned missions, the Space Station Freedom (SSF)
Communications and Tracking System (C&TS) was selected as an example system.

1.1 Project Description

The intent of selecting the SSF C&TS was both to develop the assessment methods
and to provide useful assessment results to the ongoing SSF C&T design process. Initial
goals for the assessment process, specific to the C&TS, were to determine the software
allocation that maximized the system throughput while minimizing the hardware required.
It was planned that while performing an assessment with these goals, an assessment
methodology would evolve that would have application to similar systems on future
manned mission spacecraft.

1.2 Initial Project Plan

Since no known assessment for a system of this type had been previously performed,
no framework, or prior work could be reviewed to provide a starting point for the
assessment process. A plan was needed as a starting point. To begin the process, a draft
assessment plan based on an investigative approach was prepared and submitted to JSC
personnel early in the program. As the assessment process evolved the plan was updated
to form the outline for the assessment methodology (see Appendix A for the final
revision).

“The initial project plan included descriptions for the following assessment tasks:

1. Meetings - The belief was that by meeting regularly with Johnson Space Center
(JSC), University of Houston-Clear Lake (UHCL), and contractor personnel knowledgeable
of the C&TS system, a full understanding of the requirements and current status
information about the ongoing development process could be obtained.

2. Development of Methodology - With the information obtained during the meetings,
the initial project plan could be updated to better reflect the C&TS requirements and the
current state of the system design. -



3. Data Collection - Collection of data would be the first major step of the
assessment process. It was initially anticipated that outside documentation from other
NASA agencies and current contractor correspondence would be available in addition to
documcntauon at the JSC.

4. Perforrmn Assessment - With documentation and understanding of the current state
of the C&TS design in hand, the parameters in need of assessment could be determined
and the assessment process proceed.

5. Oral Presentation - An oral report was planned for presentation toward the end of
the assessment process to provide the JSC and UHCL an overview of the assessment and
assessment results.

6. Final Report - A final fcport would be prepared dct'ailing' the assessment process.
The results would include all findings with conclusions, and recommendations. In addition,

it would include a methodology suitable for application to similar software assessments of’

other manned mission systems.

1.3 Data Collection

The data collection process was used to ascertain the curmrent status of the C&TS
design.  Unfortunately, current information was dxfﬂcult to obtain from the cogruzam
personnel and documentation available. :

1.3.1 Interviews with C&T Personnel

Initial interviews were held with key personnel from the JSC Communication and
Tracking Department. Through these interviews it was leamned that the day to day progress
on the C&TS design was in the hands of the prime contractor and the subcontractors.
What current information could be gleaned by NASA JSC was through infrequent design
reviews and periodic submittal of contractual documents, such as software specxﬁcauons

and hardware descriptions. - e m e

In many cases JSC personnel were aware of directed changes that were to be
addressed by the contractors, but they had no official information regarding contractor
decisions and actions in response to the changes until a document was received or a
meeting was held covering the topic. C&T personnel were attending meetings on other
SSF systems, such-as Data Management System (DMS), to keep better informed about
related design activities that might affect the C&TS. These meetings seemed helpful, but
it’s doubtful that they were an adequate substitute for direct contractor contact.

1.3.2 Documents Received from NASA JSC

There was no shortage of documentation describing the C&TS software and
hardware, but most of the documentation was neither current nor coherent. Because of the
changing plans for the SSF, the software and hardware design documents lagged the design
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process. Versions available during the assessment did not reflect current plans or recent
changes to the system design.

Top level documentation- such as the Architecture Control Document, Baseline
Configuration Document, and Interface Development Document did not reflect the current
design. For example, the Space Station Software Standards Document, JSC 30244,
referenced by many subordinate documents such as the Contract End Item Specification for
the Communications and Tracking System (C&TS), SP-M-002, May 1990, was incomplete.
This document was first prepared in September 1986 (version available in the JSC library),
and the version at the JSC had not been updated at the time of the assessment. The
available version contained statements such as " 6.0 CONFIGURATION MANAGEMENT -
To be provided in a subsequent release.”

Despite the condition of the documents, they were the only available written record
of what the software and hardware were required to do and what was planned for meeting
those requirements. More than 110 documents (see Appendix B) were obtained from the
JSC for detailed study, and many more documents were scanned and determined not useful.
The C&TS is unlike any previous communications system designed for space, so it was
necessary to carefully read many of the documents to understand the design concepts. As
a result, as much as 50% of the assessment effort was spent on document review.

1.3.3 Qther Data Sources

It was initially anticipated that contact could be made with the  subcontractor
responsible for the C&TS and the subcontractor’s subcontractors to obtain their current
views on the system hardware and software. Unfortunately, it was learned that there is no
C&TS permanent subcontractor presence at the JSC. As a result, it was not possible to
learn anything directly from them. There was some indirect information received through
"white papers” or written responses to questions from the JSC C&T personnel. Other than
this indirect information, SwRI had no technical interchange with the subcontractors
regarding topics of this assessment.

Weekly meetings of the C&T technical personnel were held at the JSC. These

meetings were attended on a bi-weekly basis by SwRI represcntatives to learn current
thinking, to track program status, and to gain a better understanding of the C&TS. These
meetings provided valuable criteria for interpreting and sorting out the incorrect or outdated
information from the documentation.
“- The software language mandated for the system is Ada. There were many
information sources used outside of the Space Station program that addressed compilers,
coding practices, and benchmarks for the Ada language. In addition, SWRI was in the
process of writing Ada code for a large U.S. Army program and had sources of practical
information regarding design of Ada source code. This became very important when it
‘was determined that the software language, compiler, and coding techniques had as much
to do with memory requirements and throughput as the system requirements and hardware
selection.



20 PRIMARY ELEMENTS

2.1 Processing Hardware

The processing hardware for the C&TS will be physically distributed over several
nodes of the space station.  Although the processing hardware will be somewhat
standardized for all SSF systems, the actual architecture, processing capabilities, and
interconnection will be configured to match the requirements of each Space Station system.

2.1.1 Processor Hardware Architecture

- The mairh”;:;m'poncnts of the C&TS hardware architecture are the Standard Data
Processor, the Embedded Controllers, and the Bus architecture.

2.1.1.1 Standard Data Processor S

The Standard Data Processor (SDP) (see Figure 1) description is contained in the
Configuration Item (CI) Specificatdon for the Standard Data Processor, 152A401-PTIA,
May 1990. Further hardware specifications for the Embedded Data Processor (sub
processors within the SDP) are available in the Configuration Item Development
Specification, MDC H4534, November 1989. Between these two documents and extensive
DMS documentation, the characteristics of the SDP hardware are well defined. The
Embedded Data Processor is of particular interest because the bulk of the C&T software
will reside in a single Embedded Data Processor (plus back up). Key parameters of the
Embedded Data Processor are shown in Table 1.

Although the SDP is supposed to be standard for all SSF systems, provisions have
been made for more than one version. An SDP version with two Bus Interface Units
(BIUs) capable of addressing up to six dual-redundant DOD-STD-1553B buses has been
defined, but it is unclear at this date if the C&TS will require three or six local buses. A

bus structure has yet to be selected.

As with the Embedded Data Processor, the Embedded Controller is fairly well
described in the documentation (Table 2). Despite the specific information and the
statement in the SRU Design Document for the Embedded Controller, 562-SSF-SGVBSP-
061, January 1990, that, "The Embedded Controller is designed to be used in all ORUs",
the description does not fit all planned controller configurations. For example, per the
Software Preliminary Design Document for the Space-to-Ground Baseband Signal Processor,
Preliminary, DPB-001, January 1990, the Space to Ground Base Band Signal Processor
(SGBSP) is presently designed to use a 80386 processor with different ROM and RAM
allocations than the embedded controller of 562-SSF-SGVBSP-061. Conlflicting information
of this sort made it difficult to comrectly interpret the C&TS hardware design documents.
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2.1.1.3 Bus Architecture

The bus architecture chosen for the C&TS is a combination of parallel and serial
architectures. A strictly serial ‘bus architecture would pass all information through the
processing hardware to the Orbital Replacement Units (ORUs) required to perform the
C&T functions (see Figure 2). This is a very flexible architecture, because all data paths
are under software control. On the negative side, it raises some reliability concerns,
because failure of the processing hardware could disrupt operation of all system ORUs. A
parallel bus architecture (see Figure 3) provides less flexibility, because signal paths must
be hardwired to specific system ORUs. However, thesc hardwired signal paths provide
access to the signal processing ORUs so that some system capability may remain if contol
processor failure occurs. .

The combination architecture of the C&TS (see Figure 4) provides the flexibility
of the series architecture for the high data rate subsystems such as the Space to Ground
Subsystem (SGS), and the direct access of parallel architecture for lower data rate
subsystems such as the Tracking Subsystem (TKS). In addition, the general purpose CMS
bus (DOD-STD-1553B) which forms the "backbone" of the C&TS architecture can be
programmed to transfer data or commands. This allows some control of the overall
architecture of the system by adding to the local bus and changing the software to
accommodate the new ORUs. It is apparent that the bus architecture selected for the
C&TS is a very flexible architecture with extensive hardware and software expansion
capability. :

2.1.2 Processing Capabilities

Once the system hardware elements were defined, the processing capabilities and
limitations of the processing hardware were investigated as an aid in determining the most
efficient hardware/software distribution.

2.1.2.1 Memory

Memory allocations for the embedded data processors and embedded controllers are
described in the appropriate specifications for each ORU (see Appendix B of the Second
Monthly Status Report dated September 17, 1990). What is not clear is the rationale for
the allocations.  Other than the various allocation documents (Processor Resource
Allocation Documents), there were no documents found that specifically addressed the
memory hardwsre limit and the criteria for allocating the various amounts of RAM and
ROM to the embedded processors or controllers.

There may have been an early C&TS trade study performed to make these
decisions, but if so, it was not referenced in any document reviewed. Undoubtedly, there
must have been some overall SSF system requirements assessment done carly in the SSF
program to determine the general requirements for the SDP, but again, no references to it
were found. The SDP Embedded Data Processor will be delivered with 4 Megabytes of
RAM, but will support up to 32 Megabytes, if necessary. This is a very generous
expansion capability, and if used, should be sufficient for any foreseeable increase in

9
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software requirements. But, the effect of the additional software requirements on
throughput cannot be estimated without information on the nature of the increase.

The memory allocation process for the embedded controllers is also unclear. Most
embedded controllers have 128 Kilobytes of delivered ROM and 64 Kilobytes of delivered
RAM with expansion capability to 256 Kilobytes ROM. No RAM expansion capability is
provided. But, depending on the subsystem, embedded controllers have less ROM (64
Kilobytes for SGBSP 80386 Embedded Controller) and some embedded controllers have
less RAM (32 Kilobytes for the Video Switches). No mention was made in any reviewed
document as to how or why these memory sizes were allocated. '

Since multiple subcontractors are involved in the design of ORUs with embedded
controllers it would seem reasonable to have some sort of common study or at least a
discussion and agreement on the processing hardware to be used. Other than the statement
in the SRU Design Document for the Embedded Controller, 562-SSF-SGVBSP-061, January
1990, that "The Embedded Controller is designed to be used in all ORUs", no agreement
or study reference was found in the documentation. Yet, as previously noted for the
SGBSP controller, not all the controllers are based on the 80186 processors specified in
562-SSF-SGVBSP-061.

2.1.2.2 Throughput

When the assessment was started, it was not known how far the C&TS code
development had progressed. After initial review of available software documentation it
was apparent that no code had been generated and the detail software specifications had
insufficient detail to estimate execution speed and data throughput. Amazingly, the various
PRAD releases and the C&TS PDR presentation material presented throughput numbers as
if the amount of code and its structure were known to some level of certainty.

The DMS software is reportedly further along in the development process, and has
presented some detailed processor loading and latency data to the SSF technical
community. Much of this data was described in the DMS Performance Presentation,
September 7, 1990. Although the latency and loading data may be accurate, there was no
backup material presented to check the derivation of the data.

The DMS report presented many tables with exact timing values for each DMS
metric and many compilation diagrams and tables showing how these values add up. In
some cases models were referenced, for example the Nyles Heise/IBM Dynamic Model, but
no description was presented explaining how these models were used to generate the timing
data. Despite all the detailed data, the report did not describe the analysis process.
General statements, such as "Several methods have been used to make DMS performance
projections, depending on the maturity of the component involved,” are all that was
provided. Without the derivation information, it was not possible to assess the validity of
the data.

In reference to the local bus performance for the system applications, the same
DMS report stated, "Local Bus [/O modeling is still being developed, and (performance) is
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dependent on completion of the detailed software design.” Apparently, the DMS software
personnel also believe that the software must be developed to some extent before
representative performance estimates can be made.

The lack of adequate software descriptions for many of the subsystems and the
complete absence of any software description for other subsystems such as the UHF and
Tracking Subsystems resulted in no meaningful throughput estimates for the C&TS. The
most that could be said about throughput was that there are too many interrelated factors
that remain undefined at this time to make any useful estimate of overall system
throughput for either information or control.

2.1.2.3 Input/Qutput (VO)

Inputs and outputs for each of the processing elements, i.e. SDP and Embedded
Controllers, are fairly well described in the specifications for each. The ORU inputs and
outputs are not as well described. Some subsystems such as the Space To Ground
Subsystem have ORU descriptions that include details of each I[/O situation. Other
subsystems, specifically the UHF and Tracking subsystems, do not contain well defined
hardware descriptions. Also, the overall local bus interconnection situation has not been
resolved leaving questions about the required number of ORU connections for each local
bus. The C&TS PDR presented several local bus scenarios all supporting 76 ORUs (see

Figure 5).
2.1.3 CMS Buys Architecture

The overall analysis of the CMS bus architecture and its capabilities, including the
efficient communication between the CMS and the ORUs, is a major area of concemn in
the implementation of the C&TS. The physical layout of SSF equipment dictates the
location of the ORUs that control functions such as antenna pointing, activation of on-line
systems, activation of spare systems, etc. The dynamic nature of the changing SSF
structure has caused the CMS architecture to be subject to signiﬁcant revisions. Without
knowing the numbers and locations of the equipment components in_the CMS architecture,

it is not possible to establish the optimum architecture of the CMS.

determined.  Further, Standard Data’ ‘Processor (SDP) designs have been determined.
Further, the DOD-STD-1553B (Aircraft Intemal Time Division Command/Response
Multiplex) Data Bus standard has been chosen as the method of interconnection.

Therefore, the bus throughput, rules of engagement for the bus controller, SDP and ORU
processing capacities, and many other items are relatively fixed. While it will be no small
effort to achieve this goal, the best arrangement for the CMS architecture can be reached
once the number and location of the ORUs is finally determined. T

Undcrstandmg this very important problem exists, a systems engineering and
integration trade study on the CMS architecture for phased assembly sequence was
completed and published on 31 May 1990 (SY-01.3-015). Because the results of the trade

study are critical to the design of the CMS architecture, it was carefully reviewed. The
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apparent objective of the trade study was to determine the best CMS architecture based on
the SSF structure at the time of the initiation of the report. The insight from running the
trade study based 6n what was thought at the time to be the SSF structure was deemed
worth the cost. The stated objective of the trade study was "to determine the optimal

CMS architecture for the phased assembly sequence; permanently manned configuration
(PMC) to assembly complete (AC)".

However, in the findings of the trade study the actual objective accomplished is
stated to be quite different. That is, the trade study findings restate the objective to say,
"to compare the relative merits of the five architectures." The difference between the
stated initial objective and the accomplished final objective is a serious problem.

First, the optimal CMS architecture for the selected SSF configuration, or any future
configuration, was not retrieved as the result of the trade study. Instead it was determined
that none of the five CMS architectures that were being considered could have been
successfully applied because of various failings. Choosing the best of five failing CMS
architectures cannot be considered equivalent to determining the optimal architecture.

Second, because of the engineering approach, updating the trade study for new SSF
configurations is at least as difficult as doing the original trade study. That is, the trade
study did not present a method to analyze new CMS architecture each time a new version
of the number of ORUs and interconnecting architectures is determined. At each point

such as this, following the trade study strategy, it is necessary to redo the trade study for
each revision of the CMS architecture.

It is assumed that this process would continue, using error information gained from
each failed architecture, until a working CMS architecture is attained. This is obviously an
unworkable plan. This can be seen in the actual events since the trade study has been
released. Because of the dynamic nature of the space station development, revisions of the

CMS architecture are occurring quite regularly, but the trade study analysis has not been
repeated. .

Then again, the overall engineering approach was not the only problem discovered
with the trade study. The implementation details of the analysis contained fundamental
logic flaws, data inaccuracies, and incorrect assumptions. Therefore, it is not recommended
that this particular analysis be repeated.

But yet, an analysis of the CMS architecture is necessary, and the original objective
is still warranted. A later section discusses the recommended approach to select the
optimal CMS architecture. However, even if the overall engineering approach were
changed, it is important to know the detail problems within the current trade study so that
they would not be repeated in the future.

The items presented in this section are the problems that were discovered with the
trade study. There may be more problems, however these stated are sufficient to invalidate
the methods and findings presented in the trade study. Naturally, some of the findings are
more important than others, but they are not presented in their order of importance.
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Instead, they will be presented in the order of the sequence they occur within the trade
study. This will make it easier to follow each of the described problems through the
document including ‘its attachments. Each discussion will take the item as it was presented,
however some of the details associated with the items appear in later sections of the trade
study, as tables, raw data, or additional explanations. These details will be brought
forward and discussed with the initial description to make the comments in this research
complete within a single section. Whenever the raw data and the method of computation
were known, a validation computation was completed. When a computational error in the
trade study is pointed out, the data of the trade study was used unless it is specifically
pointed out differently.

2.1.3.1 Obijective and Requirements

This section expands on the earlier discussion concerning how the basic
engineering objective gets diverted from the stated objective. The trade study paragraph
3.1 states the primary objective as follows:

"The primary objective of the study was to determine the optimal CMS architecture of
the phased assembly sequence; permanently manned configuration (PMC) to assembly
complete (AC)."

This is a required, desired, worthy, and attainable objective. The method to meet the
objective is in this same paragraph, and reads: '

"The optimal architecture was selected by evaluating quantitative data from selected
criteria and utilizing a scoring and weighting system to select an architecture with the
highest score."

‘The basic method statement is not flawed. The optimum architecture could be
determined as a product of a criteria scoring and weighting system. But instead of
yielding an optimum architecture, the criteria was applied to a set of architectures, which
were then compared relatively to each other. If the set included every possible CMS
architecture, then it is feasible that the resulting choice would truly be the optimal CMS
architecture. But of course, evaluating all possible architectures is not a practical scheme
(although it is inherent in the trade study strategy). If, by chance, the optimal architecture
was in the first set of five possible architectures chosen for evaluation, then of course it is
again feasible that it could be found. But, since none of the architectures met all of the
criteria, it can be stated that the optimal architecture was not discovered.

If one or more of the architectures compared did meet all of the criteria, then one
would have a working system, at least for that version of SSF. But considering the
continual nature of the system transformations, it is obvious that configuration revisions of
the SSF will continue. Repeating the trade study’s process would be expensive, and would
result in litle or no assurance of attaining a workable CMS architecture, let alone the
optimal CMS architecture.
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Notice that it is possible to have a “"correct” output from the search for optimal
architecture- analysis to show that given the number of ORUs required, the number of bus
lines allowed, the SDP processing capabilities, the weight and power budget, etc., that there
is no possible way to interconnect the C&TS equipment together and still meet all of the
criteria. Assuming the criteria were chosen correctly, this would indicate a redesign of the
ORUs or SDP, reconsideration of the number of SDPs (since it was constrained),
reconsideration of the number of bus lines possible (if it was constrained), increased power
or weight budgets, or a host of other possible corrective actions. In this situation, a

thorough analysis would indicate possible corrective actions to the system components to
develop the optimal CMS architecture.

2.1.3.2 Scoring

The scoring system used was "... chosen such that the best possible score is four
(4) and the worst possible score is zero (0) with the exception being criteria with
calculated utlization of over 100 percent which will receive a negative score. The
weighting system was chosen such that the most important criteria receives a weighting of
five (5) and the least important criteria receives a weighting of one (1)." This system was
an attempt at combining all the information into a single number total score which could
then be used to signify the optimum architecture. : .

This is a questionable approach with much potential for error. The problem is the
concept that a configuration which fails to meet one criterion, but receives high scores for
all other criteria will be determined a better choice than a configuration which meets all
criteria. The single number total score concept is inappropriate for such a different set of
criteria associated with the SSF CMS architecture. The scoring methods used to determine
the individual scores needs to be understood before the criteria judgments can be detailed
properly. The first scoring scheme applied in the trade study, listed in paragraph 3.3.2.1,
is the "percentage” scoring mechanism that is used in four of the nine criteria cases, i.e.,
the Processor Loading, Memory Utilization, Bus Loading and Used RT Ports. The score is
cqual to the percentage (based on the case amount compared to some standard) which is
then multiplied by negative four and divided by 100 percent. This number is then added
to four to get the unweighted score. This allows a range of scores from plus four to less
than zero. The negative numbers result when the data shows that the case requires more
of something than is available, According to the scheme, the negative numbers can be
balanced by high values in the other criteria areas. This is in contrast to the fact that the
negative number indicates the case fails the specification. Allowing a negative number is a
bad practice, bécause a failure should stop the evaluation. Because this is a physical real

system that must operate, a failure cannot be balanced out by the higher scores from the
other factors.

the percentage scoring method, is that multiple occurrences of a
criteria (for example, the cases with more than one Processor) occurrence requiring the
most resources is used to calculate the score. This logic leads to further obscure the
conclusions. For example, a case with multiple buses will usually have one bus that is
more heavily used than the others. It may be that there are six buses, with the other five

buses lightly loaded with the backup units assigned to them. Nevertheless, only a single
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number, based on that worst case, is brought forward to characterize the architecture.
Another case may have only four rather heavily used buses (which could be altered
significantly to the negative side when backup ORUs are activated on the bus), but none
actually exceeds the worse case-in the previous six bus example, but all four exceed the
other five. A single bus score will be included into the total that indicates that the second
case is preferred, which is clearly not true.

The second scoring scheme used with the power, weight, and volume criteria is
related to the amount of resources needed. The score is computed by assigning a score
based on a linear curve between four, meaning no resource is needed, to zero assigned to
the maximum value obtained for the criteria compared to all of the architecture cases.
There are two problems with this scheme.

First, the worst score of zero is given to an architecture case that may fall within
the resource budget, but is still heavily penalized because it has the maximum value in that
category. Also notice that according to this trade study method, there will always be a
score of zero assigned. Second, the best case score will be assigned to an architecture
case that may be extremely deficient in its capability to meet the mission performance
needs. Since two of these criteria have been assigned the maximum scale weight of five,
these factors become more important overall than the mission performance. As the
individual criterion are discussed that use this scale, these situations will be illustrated with
examples. '

2.1.3.3 Selection Criteria

The trade study paragraph 3.3, and its subparagraphs, present all of the selection
criteria. It is pointed out that each criterion is "weighted (numerically or by pass/fail) to
relative importance in determining the effectiveness of alternatives." There are two
problems with this technique as used in this system of criteria comparisons.

First, all of the items should have had pass/fail thresholds that stop the evaluation.
That is, if the CMS architecture processing requirement of a particular case being
considered exceeds the amount budgeted, the architecture case should have failed the
criteria and no longer been a possible candidate. In fact, contrary to this thinking, it is
stated in the conclusion that even those few pass/fail items that the trade study did include,
were not factored into the scoring system. This rationale was followed because the trade
study engineering approach was based on choosing the best possible out of a set, so the

- -process would not stop, rejecting the system as a possible architecture as it should have.

Instead it continued on, assuming that it may score higher than another architecture because
this one takes less power, or is lighter. This would make it the best overall architecture,

-even though it wouldn’t actually have the processing power needed.

Second, the weighting of the criteria is so biased toward the processing loading,
the power, and the weight, that the other factors could have been left out of the trade
study without any change in the result. Hence the trade study’s conclusion, "the power
and weight considerations versus available processor utilization are key drivers for selection
of a recommended architecture” must be considered a trivial solution. That is, none of the
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work completed in the trade study influenced the conclusion after these initial assumptions
were established.

On the contrary to this situation, the other criteria should have been factors in the
final conclusion. In fact, paragraph 3.3 states the selection criteria are driven from
program requirements, military standards and requirements in the SOW. A cross reference
matrix to these would have been a desireable attachment to show why such exaggerated
biases in the weightings were employed based on these requirements.

2.1.3.3.1 Processing Loading

The processing loading has a scaled weight of a five (the maximum assigned),
and was "based upon expected frequency of required functions and estimated lines of code
for each function plus processing to service messages/transactions between LCA and CIs
(as applicable) analyzed for each processor." It was computed using a formula found in
paragraph 3.3.1.3 of the trade study.

The trade study assumed a maximum processor MIPS allocation based on 3.1
MIPS per SDP with 1.581 MIPS being the allocation for the CSCIs at PMC and 1.581
MIPS at AC. This data came from the Dec 89 PRAD, and the percent utilization was
based on the contractor’s allocation at that time. Because the trade study was published on
31 May 1990, it did not include the updated processing values released in the May 1990
PRAD. These same allocations were lowered to 1.331 MIPS in the resubmittal, or only 84
percent of the value used in the trade study. It is understandable that the values are
estimates and will change, but because of a lack of currency and the rigid engineering
approach, this data, as well as much of the later data, was known to be invalid before the
trade study report was ever published and nothing could be done to correct the error short
of reaccomplishing the trade study. It is very apparent that the static input method used in
the trade study was inappropriate for the system being measured.

The equation employed to estimate the use of the processor was designed to take
into account both the fixed processing activity of the CPA and LCA load scenarios,
assigned as .291 MIPS and .4 MIPS respectively, and the processing loading due to the
message transactions of the BIUs. It was not clear where these scenario estimates were
derived but it is apparent from the terminology that these values are based on machine
language instructions. On the other hand, values of 400 and 200 Source Lines Of Code
(SLOC) per message were used in the equation to account for the message loading factor.
The estimate of SLOC is based on ADA code usage to accomplish the task. These SLOC
factors, after being multiplied by the number of messages, were incorrectly added to the
291 MIPS and .4 MIPS machine language instruction scenario values. A trade study
assumption established a factor of 4 machine language instructions per SLOC, but failed to
recognize it was a needed conversion to be used at this point. Hence the values for
processing loading determined from the equations are obtained by adding unlike quantities,
making the final computed data incorrect even if the estimates were not.

20



2.1.3.3.2 Power

The power criterion was also weighted as a five. It was to be the sum of all the
power requirements for all CMS' equipment excluding the C&TS ORUs on the 1553B data
buses as a note in the trade study indicated. Paragraph 3.3.1.5 in the trade study added
some information that the equipment normally powered off was not included. The power
data for the SDPs and RCs were obtained from the DMS critical item specifications.

The score established for best power usage situation of zero Watts is given a
four. At the other end of the scale, the power consumed in the worst case has a value of
zero. Naturally power is a critical resource on SSF, however using this criterion, having
no CMS equipment yields the highest score, and using extensive equipment yields the
worst but still passing score of zero. In fact the power usage should follow a system that
shows that if the power allocation is not exceeded, then the architecture should qualify as a
possible architecture. Further, given everything else equal, the lowest power usage would
be associated with the optimum choice. The fact that backup power requirements are not
considered is of concern. It must have been assumed that the failed equipment has been
powered off, which is not always true.

2.1.3.3.3 Weight

The weight criterion also has weight scale of a five and uses the same scoring
method as was used in the power criterion. The value was to reflect the sum of all the
weights for all CMS equipment. The cable weight was obtained from the DMS "Local
Bus Trade Study" by Landen and Nossaman. The backup equipment must have been
included since it was not stated as being excluded in this case. Once again, no
consideration was given to being under or above a budgeted weight amount.

The score established for best weight usage situation of zero pounds is a four.
At the other end of the scale, the weight in the worst case has a value of zero. Once
again, this system defines no CMS equipment as the optimum, giving it the highest score,
and using extensive equipment yields the worst (but still passing) score of zero. As in the
power case, the weight usage should follow a scoring system that shows that if the weight
allocation is not exceeded, then the architecture should qualify as a possible architecture.
Given everything else equal, then the lowest weight usage would be associated with the
optimum choice.

2.1.3.3.4 Memory Utilization

, The memory utilization used the percent scoring system and was scaled with a
weight of three. The source used for the memory allocation basis was the Dec 89 PRAD.
The source for the memory used data is unknown, but it did not seem to use the SDP
memory estimate contained in the Dec 89 PRAD. The estimated data used was provided
in paragraph 3.3.1.4 of the trade study, but it cannot be validated. Since the method used
to determine the amount of memory utilization is the percentage method, the comments
including the single worst case comment is also applicable for memory utilization. The
worst error in applying this measuring system is that it can not be considered correct to
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penalize an architecture case by giving it a zero worth, because it uses all of the memory
space assigned to it. It is just as wrong to assign a negative number to an architecture
that exceeds its allocation. Further, it seems strange to give the highest, or optimum score,
to a system that uses no memory allocated to it. '

Note that it appears, but it is not documented, that the code memory space
utilization estimates were based only on static storage value and not on runtime memory
usage. The overall problem of estimating storage use is not a simple one and it is
addressed more thoroughly in the later section under compiler choices. The details of
general storage space problems will be deferred until then. The point is that the estimates

of storage space are as unsubstantial as the system used to compare the data values.

2.1.3.3.5 Bus Loading

The bus loading utilization uses the percent scoring system and was scaled with-

a weight of three. The percentage basis used for the bus capacity maximum allowed was
the bus data rate of 1 Mbps. The /O channel allocation standard in the Dec 89 PRAD of
700 Ikdlobytes per second was not used. The source for the message used data was
provided in the appendix to the trade study. Since the VO utilization is the percentage
method, the comments including the single worst case comment is also applicable for
memory utilization.  Once again note that, in applying this measuring system an
architecture is considered of no worth by giving it a zero score when it uses the [/O
capacity allocated to it, and the highest, or optimum score, is given to a system that uses
no I/O.

One error that is associated with the 1553B Bus I/O utlization is that the data
rate of 1 Mbps should not be considered the maximum throughput (it is much better than
the 700 kilobytes noted above, but still wrong). There are several factors that limit the
throughput achieving its line speed that were not incorporated into the trade study. The
overhead associated with the 1553B standard requires a minimum of a 4 microsecond delay
as an intermessage gap. There is also a 4 to 12 micro second response time window
allowed for a valid command word. Neither of these 1553B bus overhead components are

~included in the trade study computations, However, these bits can amount to 8 to 12 bits

every message. The short control message exchange can be as little as 40 bits, hence the
8 to 12 bits overhead (20 to 30 percent more time per message), is a significant addition
to the bus loading computations that was ignored when a 1 Mbps value was used for the
I/O capacity of the bus. ,

The avéragé 'bﬁ's loadmg due to aperiodic messages is based on one tenth of the
message length per second. That is, if a message is 700 bits, the loading computed for it
is 70 bits per second. The basis for this assumption is not clear. --- .-

The bus loading data does not include message traffic associated with the backup
equipment on the buses. The worst case loading for any single bus is when all of the
equipment attached to that bus, including the backup equipment, is operating. Using the
data in the trade study the bus loading was the smallest problem area. However, the
procedure to consider bus loading data only for the primary operational mode, leaves the
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unanswered question, "If the backup ORUs on a bus must be activated, will the bus still
support the combined message loading?"

And finally, in certain cases, the bit count for the messages that was used was
exactly 20 bits (one 1553B word) higher than it should be. This is true for periodic
transmit and the aperiodic transmit messages such as VS7M being a 8 bps load versus a 6
bps load for VSIC. There appears to be something besides the -Command Word, the
Status Word, and the Data Words included, but it was not defined nor could it be
determined.

2.1.3.3.6 Volume

The volume criterion was assigned a weighting factor of two. Apparently the
space problem on the shuttle is 2.5 times less significant than the weight problem. The
same problems that applied to the power and weight evaluation methods apply to the
volume criterion, except that additionally a computational error in the case 5 PMC data of
the weighted score of .11 units. The significance of this error is realized when it is seen
that the weighted value for case 4 Assembly Complete was .1. This indicates that the
error in case 5 was more than the total value computed for case 4. Also, the cases with
the worst volume use is assigned the value of zero, indicating that an .11 error is
significant in that it is more than these scores.

2.1.3.3.7 Spare RT Ports

The Spare RT Ports criterion was assigned the lowest weight, i.e.,, one. It used
the percent scoring system, and considered the worst situation to be when all 31 ports
available for use are being utilized, and the best case when a bus has no ports assigned for
use.

The unused spares is a very misleading parameter. The first problem is again
associated with the percent scoring system in that the worst case bus presented for each
architecture is the only one that is included in the comparison between architectures. This
method hides a much larger spread between buses than is indicated by the data. Also,
note that any expansion requires the need for the ORU to be there and be functional. This
demands processing for the bus activity, message processing for the ORU’s traffic,
increased weight and power consumption, and a host of other variables. It is not possible
to simply expand the bus because the address limit of the 1553B bus (31 nodes) has not
been reached. Therefore, it is not appropriate to favor one bus over another because the
ceiling for the address availability in the 1553B scheme has been approached in that bus.
In fact, contrary to that logic, the Contract End Item indicates in para 3.3.9.1 that growth
allows for replacing ORUs with new technology, but does not indicate additional ORUs
would ever be added. .

2.1.3.3.8 15338 Bus Impedance

The Bus impedance criteria had a pass/fail weighting and was a nodal analysis of
the 1553B bus impedance as viewed from each remote terminal on each bus to determine
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if degradation of wave forms violated the DOD-STD-1553B requirements. The bus
impedance analysis tool used was the SCI Technology, Inc. simulation program. There
was a comment in the trade study general findings that indicated recognition of simulation
problems in the results. It is as follows:

"At this point in time it is not known whether one or both of the models are
inaccurate.” :

The raw data used, and the outputs of the simulation were provided in the
appendices. The trade study assumed that the C&TS bus routing would minimize the stub
lengths at the expense of added bus length. There is a basic flaw in that assumption.
Extending the bus to go to each node increases the exposure of the bus, therefore
increasing the probability of bus damage and total bus failure. It is more logical to
increase the exposure for the single node, rather than to increase the exposure of the entire
bus. Further, adding bus length increases weight and volume factors if the bus is looped
out and back to a single node. This seems to be an unusual choice, because up to a 20
foot stub is acceptable, and used in some parts of the structure, and even longer stubs are
not ruled out by the 1553B standard.

It was stated that the bus impedance criteria was not included into the scoring
system, however a lengthy discussion was available which presented the tables and scores
obtained from the simulation data. The trade study claimed that the simulated waveforms

indicated failures of the zero crossover caused potential problems with all five architectures.
The trade study indicated that the simulated waveform failures for individual bus structures
occurred from a minimum of 13% of the nodes on the local bus 4, case 1 showing failures
to a maximum of 50% of the nodes on local bus 2, case 1 failing. The average node
failure for all of the nodes simulated was 34 percent. Not one bus structure simulated was
reported to have successfully met the zero crossover specification. Additionally, the case 2
architecture was reported to have come very close to not meeting the minimum signal
amplitude specification.

If this outcome were correct, it would be a disastrous result. Obviously, all of
the buses would have been ruled out as possible CMS architectures because of the zero
crossover specification and the trade study would have had to stop. Oddly, that was not
the reasoning used, and for some unknown reason, the conclusion was that only case 2
needed to be ecliminated because of impedance/layout concerns. Perhaps it was ruled out
because it was also claimed to have almost not met the minimum signal amplitude
specification, : :

In fact, all of the conclusions, tables, and logic with the bus impedance findings
are in error. Analyzing the SCI Technology Inc. data in the trade study’s appendix reveals
that every node, on every bus, passed every simulation.

Also, the lowest voltage input in case 2 for the most distant ORU is still at 2.0
volts, which is well above the standard minimum of .86 volts. Note also that the output
value at the source is only 4 volts, indicating a relatively small drop between source output
to ORU input. The maximum the standard requires at the output is 18.0 to 27.0 volts
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loaded at 70 ohms. The source output value used for the simulation is unknown, but it
appears that it could be boosted to improve the ORU inputs if a real problem did arise.

2.1.3.3.9 SDP_Availability Risk - -

The SDP Availability Risk is associated with the different architectures being
evaluated needing SDP types not currently supported by DMS. This follows the pass/fail
rule that needs to be evaluated for each case. Since the criteria that used pass/fail rule
were not included in the scoring system, it is assumed that this criterion will be relegated
to a discussion just as the bus impedance criterion was done earlier. Contrary to these
expectations, the only comment related to this criterion discovered in the trade study was
found on page 35 related to the case 5 findings. It stated the following:

"This architecture requires an SDP with supports two BIUs."

Assuming this sentence should read "which" instead of "with", it still does not
fail case 5, nor does it pass case 5. In fact, it is not certain what impact it was intended
to have on case 5, because it made no judgement in relation to this statement. Since this
is the only place the trade study makes any comment about SDP availability risk, it is not
at all clear why this criterion was included.

2.1.3.4 CMS Architecture Trade Study Conclusions

There are many assumptions that needed to be made to complete the trade study;
but those chosen turned out to be incorrect and misleading. The trade study justified some
assumptions as correct by generally referring to requirements documents or other studies,
but the rationale for most of the assumptions were not made available for review. This is
especially true in cases where the assumptions seemed unreasonable. The engineering
methods of criteria evaluation, the scaling procedures, the findings and conclusions of the
trade study are all unacceptable.

The recommended approach to do such a trade study is that the criteria should be
established and become inputs to a system of equations and interrelated maximums and
minimums. This would be accomplished in a manner similar to the linear programming
conceptual approach at selecting the optimal solution given an objective equation and the
set of constraints. The key is that for each version of SSF, a known set of factors will
immediately result, and from that point an analysis could indicate the optimum architecture,
or determine that if one does not exist, to recommend various solutions to achieve one.

This engineering solution approach is intended to be as dynamic as the subject
question. That is, as events drive new or different SSF structures, these factors can be
input into the system, and an optimum CMS architecture, or specification conflict, will
result.  This is a specific engineering design tool which supports the specific design
process of the CMS architecture.

The details of the trade study errors were not presented here to prove that this
trade study was inaccurate and contained numerous logic flaws. The trade study report
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recognized this itself when it qualified the results by saying that architecture 3 was the
‘recommended architecture of the study” and not the recommended architecture for SSF.
The details of the study were presented as a caution that any decision based on information
originating from the trade study ‘should be used with great caution. This is a very serious
situation if hardware design decisions are actually based on the results of this trade study.

2.2 ngtwam[ﬁrmwm

The other half of the C&TS is the software/firmware. The Control and Monitor

Subsystem (CMS), ORU Firmware, and Software Language were considered the primary
assessment areas for software. )

22.1 Control & Monitor Subsystem

At the heart of the Control & Monitor Subsystem (CMS) is a Standard Data
Processor (SDP). An overview of the software content of an SDP is presented in Figure 6.
The SDP contains two Embedded Data Processors (EDP) as described in section 2.1.1.1.
As depicted in Figure 6, one EDP contains the Network Operating System (NOS) while the
other contains the system applications, the Data Management Applications (DMA), and the
Runtime Object Data Base (RODB). DMA includes Operating System Ada Run Time
Environment (OS/ADA RTE), Data Storage and Retrieval (DSAR), Standard Services
(STSV), User Support Environment (USE), and System Management (SM).

The following sections describe the CMS application software, the DMA softwaré,
and the RODB.

2.2.1.1 Control and Monitor Application Software

There is a significant delay between the time a change is agreed upon undl the
change is incorporated in the C&TS documentation. Although an architecture change has
reduced the CMS application software to a single CSCI, all Space Station Freedom (SSF)
documentation reflects the development of two CMS CSClIs, each residing in 1 separate

SDP. The two applications are the Local Controller Application (LCA) and the Control &
Monitor Processor Application (CPA).

The purpose of the LCA is to control the operation of the C&TS equipment,
monitor the health and status of the C&TS cquipment, monitor data received from the
C&TS equipment, detect faults in C&TS equipment, perform fault isolation and recovery,
communicate with the CPA, and maintain files on the Mass Storage Unit (MSU).

Although not consistent with the release chronology of the Software Requiremments
Specification (SRS), the Software Preliminary Design Document (SPDD), and the material

presented at the Preliminary Design Review (PDR), it is clear that the subfunction
decomposition presented in the SPDD (SY-33-002 5/90) represents the software
breakdown. The subfunction decomposition presented in the SPDD is reproduced as
Figure 7.
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The purpose of the CPA is to initialize the CMS software and C&TS equipment
configuration, control the operation of the C&TS equipment, supervise C&TS equipment
monitoring and reporting, establish' C&TS fault isolation and recovery processing, interface
with the LCA, and maintain files on the MSU. As with the LCA, it is clear that the
subfunction decomposition presented in the SPDD (SY-33-001A  5/90) represents the
documented software breakdown. The subfunction decomposition presented in the SPDD is
reproduced as Figure 8.

While no official documentation for the combination of the two CSCI's into a
single CSCI exists, SWRI has projected the subfunction decomposition of the combined
CSCI as illustrated in Figure 9. This Control and Monitor Application (CMA) breakdown
combines the two executive subfunctions into a single subfunction and combines the LCA
Database Services and the CPA Data Management subfunctions into a single subfunction.
All of the other subfunctions from LCA and CPA appear in the combined CSCI
subfunction decomposition. '

The latest Processor Resource Allocation Document (PRAD) dated May 1990
indicates that the memory usage in the CMS SDP is 40 percent over the available memory.
However, this estimate was obtained by adding the memory requirements of the LCA and
CPA CSClIs, and with the exception of placing the two CSCIs in the same SDP, did not
account for recent changes which have not filtered into the SSF documentation.

By comparison, the estimated SDP memory requirement for the Data Management
Application (DMA) as presented in the PRAD 12/89, PRAD 5/90, and DMS Processor
Resource Allocation Manual (PRAM) 7/90, has steadily declined as DMA software
development has proceeded. Although the PRAD 12/89 contains numerous mathematical
errors which suggest cautious use of the numbers provided, the steady downward trend in
the DMA memory requirement is clear,

The SWRI CMS application estimate, presented in Table 3 is based on reduction
due to architecture changes, to use of standard services software (see section 2.2.1.2), and
to use of common code, e.g. common subroutines. The architecture changes include
combination of the two original CSCIs and reduction in system hardware, e.g. ORUs and
CMS local bus. This software estimate is based on these adjustments applied to the
subfunction estimates provided in the SPDDs. The data in Table 3 is organized according
to the SwRI projection of the combined CSCI architecture presented in Figure 9.

While the total source lines of code projected in Table 3 represents a large
reduction from other documented projections, the subcontractors responsible for previously
released estimates are only now reviewing the impact of architecture changes and the use
of standard services on CMS SDP memory requirements. This projection, as well as
several recent unofficial estimates, indicates that the downward trend in the DMA memory
requirement is being paralleled by a similar downward trend in the CMA memory
requirement.  As a result, the next official estimate, which takes into account the
aforementioned impacts, should indicate that memory usage in the CMS SDP is at an
acceptable level, i.c., 3400 kilobytes or less.
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TABLE 3

SwRI CMS APPLICATION SOFTWARE ESTIMATE

CMA EXECUTIVE:

REQUEST SCHEDULER:

SERVICE PROCESSING:

CAMERA CONTROL:

SUBSYSTEM STRINGS:

FAULT MANAGEMENT:

DEVICE MANAGEMENT:

COMMUNICATIONS GATEWAY:

DATABASE SERVICES:

RODB SPACE:

715 SLOC, 7.7 KB DATA
(10% INCREASE OVER CPA EXECUTIVE ESTIMATE)

1875 SLOC, 27 KB DATA

(25% REDUCTION IN CODE AND DATA FOR STSV USE AND
ARCHITECTURE CHANGE)

1875 SLOC, 10 KB DATA

(50% REDUCTION IN CODE FOR STSV USE, 25% REDUCTION
IN CODE FOR ARCHITECTURE CHANGE, 50% REDUCTION IN
DATA FOR ARCHITECTURE CHANGE)

750 SLOC, 2.5 KB DATA

(50% REDUCTION FOR STSV USE)

3550 SLOC, 25 KB DATA |
(50% REDUCTION FOR STSV USE, 50% REDUCTION FOR
COMMON CODE)

1500 SLOC, 21 KB DATA
(50% REDUCTION FOR STSV USE)

3646 SLOC, 87.5 KB DATA -
(50% REDUCTION FOR STSV USE. SPDD LISTED 350 KB
CODE AND DATA. SPLIT WAS ESTIMATED AT 50/50).

1875 SLOC, 30 KB DATA

(50% REDUCTION FOR STSV USE. 25% REDUCTION FOR
ARCHITECTURE CHANGE SPLIT OF 200 KB CODE AND DATA
WAS ESTIMATED AT 60/40).

550 SLOC, 47.3 KB DATA

50% REDUCTION OF CPA DATA MANAGEMENT FOR
STSV USE PLUS 10% INCREASE TO ACOMMODATE
NON-DUPLICATED FUNCTIONS FROM LCA DATABASE
SERVICES. -

270KB

(20% INCREASE OVER CPA ESTIMATE TO COVER ADDITIONAL
ENTRIES CREATED BY ARCHITECTURE CHANGE)
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22,12 Standard Services Software

Based on the System Engineering and Integration Trade Studies DMS Performance
Analysis Summary White Paper, 90IBMX0032, July 31, 1990, the DMS Standard Services
Software (STSV) was not coded but was well defined at that time. The STSV duplicates
many of the LCA functions described in the various LCA software documents.
Apparently, the STSV performs many more functions than originally anticipated by the
C&TS subcontractor. Whether the subcontractor is aware of these capabilides and is
considering their use in the CMS applications software is not known. Because of the
interrelation of the STSV and the applications software, the C&TS subcontractor should be
in close communication with DMS software developers to insure good integration with and
utilization of the STSV software. No indication of close collaboration is evident in the
documentation.

2.2.1.3 Object Oriented Database

JSC C&T personnel initially expressed some concern that the Runtime Object
Oriented Database (RODB) planned for the SSF would impose a heavy overhead for both
memory usage and throughput. From the available NASA JSC documentation, it was not
possible to determine if this concern was warranted. The recent DMS performance report
did address the memory requirement and the response time for RODB activities. Table 4
lists the estimates from the DMS report. These are average figures and according to DMS
apply to all applications SDPs. The DMS PRAM RODB estimate for the CMS SDP was
176 Kilobytes. The SwRI independent estimate for the combined LCA CPA application is
270 Kilobytes (see Table 3). The SwRI estimate is more than 50 percent higher than the
DMS estimate, but may be no more correct than the DMS estimate, based on how little is
known about the combined CMS application at this time.

2.2.2 ORU Firmware

The ORU firmware consists of both the controller firmware and firmware for other
embedded processors used primarily for signal processing.

2.2.2.1 Controller Firmware

Since the embedded controller had not been selected for each of the subsystem
ORUs (sec para. 2.1.1.2), it was not surprising to find that the ORU controller firmware
descriptions were incomplete. Controller firmware documents ranged from fairly good,
typified by the Software Requirements Specification (C&T SGS IF Switch), spec. no.
10033272, March 1990, to very bad, typified by the SGS High Rate Modem (HRM)
Preliminary, DPB-008, January 1990. '

Both of these documents were preliminary controller software requirements
specifications for ORUs of the Space to Ground Subsystem. The IF Switch specification
was a 105 page document describing each function and subfunction of the IF Switch
software requircments in sufficient detail to begin design descriptions of each firmware
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CSCI. All sections of the format for a software specification were adequately addressed,
and although some of the Message formats were listed as TBD, a table existed for each

message type.

The HRM specification was a 46-page document describing in a general way each
basic CSCIs for the HRM. No message formats were given, qualification requirements
were not addressed, interface requirements were not in an appendix as referenced, and
many of the figures and diagrams were hand drawn or obviously hand modified from other
documents.

2.2.2.2 OQRU Specific Firmware
In most cases, the ORU specific firnware is to be hosted in the embedded

__controller. Consequently, the firmware descriptions for the ORU specific functions were
rhade part of the firmware descriptions for embedded controllers. There are exceptions to

this. For example, the SGBSP has a total of 8 embedded processors, with several CSCIs
distributed across multiple processors. In any case, this firmware was no further along or
better documented than the embedded controller firmware. Because the distinction between
these two types of firmware was not clear, it was confusing when trying to determine what
firmware was intended for controllers and what firmware was intended for other ORU
embedded processors.

2223 Firmwm[Sofmg Integration

No specific mention was found in any documentation addressing the differences '
between software and firmware and how the two will be integrated prior to installation into

the C&TS hardware.

The factors of greatest concemn for ORU firmware are the lack of procedural descriptions

- for software integration, testing, and configuration control of the firmware. Typical of the

vague planning for integration and test is this statement appearing in several ORU firmware
requirements specifications, "Successful completion of software integration and CSC testing
are entry criteria for CSCI testing and, therefore, qualification requirements.”  This
statement made no sense to SwRI reviewers, read in or out of context.

2.2.2.4 Firmware/Hardware Integration

___ Firmware/hardware integration was even less defined than firmware/software
integration. Firmware/hardware integration requirements are acknowledged in documents
such as the Space Station Software Standards Document, JSC 30244, September 1986, but
are not adequately addressed. For example, JSC 30244 states, "The Firmware Support
Manual (FSM) documents are the primary means of determining how to develop, support,
and maintain the firmware." But, the accompanying FSM outline does not even mention
integration with hardware or software. '

"The Software Verification & Validation Plan (G.E.) Appendix 1, MDC H4414,
May 1990, in paragraph 4.4.2 states that the firmware will be card level integrated and that
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test will be used to verify test requirements, but nc pecifics are given. In paragraph 4.5
of the same document it states that C&TS subcor actors are not required to install or
check their firmware. The C&TS contractor is supposed to install, integrate, and check out

the complete system once the firmware is received from the subcontractors. Yet, no details
for this activity were evident in the documentation.

2.2.3 Software Language
2.2.3.1 Storage Space Considerations

One of the driving software considerations in this assessment was to meet an
objective of estimating the amount of actual memory required by a collection of unwritten
Ada programs for the Communication and Tracking Subsystem (C&TS) on the Space
Station Freedom (SSF). In approaching this problem, three complicating factors occur.
These factors are separate from the difficult problem of actually estimating the amount of
Ada code necessary to complete the application programs. Once the Ada code estimation
task is completed, then the following three factors will bound the memory space needed for
that Ada code. The factors are as follows:

1) Tﬁchardwarc employed for éiecﬁn'on.
2) The compiler used for the application.
3) The software development procedures followed during implementation.

It is not possiblc to make an accurate estimate of the amount of memory that will
be used for a function without establishing values for these factors. Hence, the estimation

of required memory storage must include critical assumptions when these elements are not
known.

In the case of SSF, the hardware device is known, and it will be either the Intel
80186 or 80386 processor, depending on the SSF unit being considered. The Intel data
sheet on the 80386 processor states that the average instruction length is 3.2 bytes. Hence,
a reasonable value for the hardware conversion factor can be gleaned from the

manufacturer’s data. Since the choice of processor is no longer under consideration, it will
not be examined further. :

The other two factors, the choice of compiler and the software development
procedures, are unknown at this time, and they have a very strong bearing on the final
storage requirement estimate. The difficulty of the space optimization, which depends on
the memory space use estimation, can be understood by noting that even with the best
accuracy of the assumptions available, the estimated memory space required is gauged to
range at least three to one/third times the actual code memory storage space required
during operation. This means that the estimate could easily lead to developing code that
could not possibly function. In this situation, it is not sensible to simply assume that the
memory storage can be expanded to meet the need. It is understood that the Processor on
the SSF has the basic capacity for increased RAM memory, however there are a large

number of real-world constraints that must be met before the expansion can become a
reality.
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This section discusses the compiler and software development method factors;
however, another consideration must be addressed first. This parameter is execution time.
An important consideration is that memory storage must normally be balanced against the
execution time. That is, if the memory space is the key optimization factor, then the
execution time of the software will most likely be increased from optimal. It also follows
that when the execution time factor is being optimized, memory requirements are often
increased from optical. This is not an absolute nor linear rule in every case, and when
both factors are equally significant, it implies that reaching an optimum balance results in
approaching minimum execution times, while also attempting to approach near minimum
memory storage space. This is obviously a difficult, but worthy engineering goal.

It turns out that performance is normally thought of from the execution time point
of view, and when most systems are said to be optimized, they in fact are approaching
minimum execution times. Storage space optimization is often left to be done by hand
coding procedures, or possibly requested by a single option on the compiler. In the latter -
case, it is always accomplished at the sacrifice of execution speed. Because the execution
time is the better known and the more standard optimization target, the optimization of
storage space side of the performance equation is all that will be addressed. This section
was written to provide that spotlight for the space factor to insure appropriate questions are
asked so that the correct answers can be obtained, and correct direction can be given
throughout the software development. This is much different than providing a systematic
method for analytically quantizing these values into an estimation of the space use.
However, specific benchmarks to be used to help estimate storage space are recommended.

- If the questions raised in this section are presented to the developers, and the answers are

unknown or cannot be adequately addressed, then the worst case storage situation can be
expected.

2.2.3.2 Compilers

The performance of a compiler is a function of a multitude of interrelated
performance considerations. Experts in this field have stated that no single approach to
evaluation addresses the requirements of everyone who needs to measure performance
(Dongarra, Martin, Worlton, 1987). Yet some gauge of compiler performance is necessary
to make tradeoff decisions.

= Studying the results of several benchmark and Ada evaluation projects, it becomes
very clear that there is a large variability in the amount of storage and the execution time
required for an’ application program depending on the particular compiler employed. The
standard method for comparing the storage performance of two different compilers is to
complete and execute a selected set of application programs and compare the storage space
needed. The ideal case would be to develop the operational program being considered and
simply compare total storage space once compiled. This is obviously an impractical
situation, in that the development effort would be complete before an estimate could be
made, and this would still not consider storage space performance of future programs. A
more reasonable choice would be to obtain a set of universal programs that can execute on
the machine being used and then compare the storage space resulting from different
compilers to get a relative storage performance indication.
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Programs used in this manner are referred to as a benchmark grouping, and simple
analysis of published benchmark storage requirements for the target machine is not an
unreasonable approach at obtaining a first cut estimate of the relative storage space
requirements for different compiler systems. Unfortunately, the state of benchmarking is
confusing and can often provide inconsistent projections. Benchmarking difficulties arise as
the overall performance is improved through optimized hardware system organizations. The
advancement of the hardware technology causes most complex architectures to do
extremely well on one kind of a benchmark problem, while doing poorly on another
seemingly equally valid benchmark program. To be an effective estimate, the nature of the
benchmark programs should match the nawre of the application programs.

The adoption of a particular compiler is loaded with problems, and before the
undertaking is completed, it is recommended that the Camegie-Mellon University Software
Engineering Institute’s "Ada Adoption Handbook: Compiler Evaluation and Selection”
Technical Report be reviewed for excellent guidance in the choice. In fact, SEI has a
synthetic benchmark called Hartstone that is targeted for hard real-time applications. The
benchmark source code and other information can be readily obtained from SEI at no cost.

There are several ways that the compiler choice influences the storage space. The
particular compiler/linker combination drives the final optimization possible. Some of the
ways storage space is affected are the efficiency with which the assembly code is
developed, the methods used for storage reclamation, the handling of complex data types
developed by the user, the methods of developing the dynamic storage called the heap, the
allotments for the stack, and many others. As an example of space variability, the
benchmark provided by the Software Engineering Institute at Camnegie Mellon University
discussed above has approximately 1,000 lines of Ada code. As compiled and linked data
it took from a low storage capacity of 30,000 Bytes of memory for DEC VAX Ada 2.1, to
a maximum storage capacity of 267,000 Bytes of memory for the DDC-I DACS-80386PM
4.3(3.1a). There were seven other compilers in the evaluation and there was a fairly even
spread between these extremes. -

As it was pointed out, optimal performance usually refers to minimum execution
time, therefore most benchmark data available is designed to provide detailed information
on the optimal "execution time" and only indirectly and briefly presents the storage space
information. Storage space requirement is usually one paragraph placed somewhere near
the end of the report that will not have been developed with as much information as one
normally desires. "Since a space discussion is hard to find, and usually not complete

enough to be understood, the following information is designed to clarify some of the more
- significant storage space considerations. . e R

Dcpcndmg ‘on the Ada corhpﬁi:r choserrl,rsévé;;l Exctors charactenm the compiler
effectiveness which influence the space use. The final performance space utilization

""""

compiler.
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Estimating storage space becomes quite complicated because user defined program
types are well supported and well used in Ada software. Besides the normal simple types
such as INTEGER, and FLOAT composite types may be made up of multiple values. In
fact, composite types may be made up of values that are themselves composite types.
Further, a legal object in a program can be a task, and tasks can be considered composite
objects which are executable. All of these factors are complicated by the fact that these
can occur on entry to a subprogram where the object dimensions are not known until run-
time and or in the declare block that is statically predetermined. The storage space
provided to the program as storage area for dynamically sized and allocated objects is
called the heap.

Dynamic allocation can be accomplished to cause optimization. Declare blocks are
commonly used when some of the objects are of undeterminable dimensions. In this case,
the rule is that the maximum possible size is allocated which is clearly a space over time
use tradeoff.

The "pragma" PACK and the "attributes” STORAGE_SIZE and SIZE also impact
storage allocation strategies. PACK tells the compiler to use space minimization as the
criterion when selecting a format for representation of a variable or array of variables.
This may also affect the overhead involved in manipulating objects of this type which
affects space and execution time.

STORAGE_SIZE and SIZE, in counter balance to the pragma PACK, can be used
with representation clauses to command the compiler to use designated sizes for object
representation and storage availability. Changing sizes using these attributes will negatively
affect run-time overhead whenever allocating or manipulating one of these objects.

Three specific compiler domains that directly influence the storage requirements
which are associated with chosen compiler strategies in the implementation are the stack,
the heap, and the code.

2.2.3.2.1 The Stack

The stack is a scheduled area for storage where last-in first-out (LIFO)
allocation is employed dynamically according to program structure and subprogram calling
paradigms. The parameters of the stack that should be quantified are:

1) Size - limits the level of recursion possible, and sets the thresholds to
convert stacks into heaps.

2) Usage - Items that are normally allocated from the stack, may instead be
allocated from the heap or the base of the stack at compile time. Data is
normally stored on the stack. This is necessary for data contained in
procedures which are potentially recursive or so that each activation will
have its own copy of the data. On some machines, accesses to the stack
are very efficient and there is no penalty involved in referencing data that
is on the stack. On other machines, direct addressing of memory is faster

39



22323 The Code

and more compact. Hence optimum compiler choice related to the stack
depends on the hardware system.

Another stack consideration is the compilers method of implementing the "cactus stack”.
Ada is a multi-tasking system, so the total stack allocation is managed as a collection of
substacks, one for each task. This organization is called the cactus stack. The cactus
stack organization is important because the way that the several task substacks are linked
together will impact the performance of the non-local memory references. -

2.2.3.2.2 The Heap

The heap is a storage basin accessible for dynamic program application when the
space needed is not suitable for the stack because it is too large or is used in a way that
does not accommodate the LIFO discipline used in the stack. The way the compiler uses
the areas of the heap that should be quantified to compare compiler capabilities are:

1) Structure and Management - Working size of the heap, and the compiler’s
policy for increasing the working size of the heap. The interaction of both
the physical and virtual memory space with the heap determines the
overhead associated with increasing the heap size. ,

2) Size - Support for deallocation, either explicit by a call to a subprogram
that relies on the run-time system to return the space to the heap, or
implicit by the use of a garbage collector that is a process running
concurrently with the program. The best choice is dependent on the
application program.

The memory space needed for the code is directly determined by the compiler’s
methods and efficiency of converting to the machine language used by the hardware. The
area of the code that should be quantified is code generation cfficiency. The effective use
of registers, instruction reordering, and other compiler optimization factors can reduce code
size greatly. Sometimes, while providing for faster execution time, code size may be
increased by reserving space within the code segment.  Since embedded systems are
usually known to emphasize efficiency in time and control at the cost of space, reduction
efforts in space, usually require more indirect calls, and memory references, which lower
performance. This is essentially, the space and performance antithetic goals as were
discussed ecarlier. In a tightly designed system, a careful software engineering analysis
needs to be completed to optimize a software system to meet the constraints of the system
storage space and simultaneously meet the execution time goals. However, the incorrect
choice of compiler and its lack of optional features related to optimization could disallow
this engineering option. o , "
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Compile time for an embedded system compiler may be greater than that for a
development environment, but the execution time for the embedded system may be much
less. Development of Ada code can be hurried by choosing a compiler that speeds through
the compiling activity in preference to requiring multiple sweeps through the code to allow
optimization of the machine code memory utilization. Choosing compile time over space
utilization, would be an incorrect choice when the system is expected to be constrained in
the spacial arena.

Also, it should be noted that there is a basic difference between program-level
storage, and run-time system storage. Program-level storage elements are the constants,
variables, and execution code declared by the programmer, where run-time system storage
involves the dynamic data structures used to support the execution of the program and uses
a variable amount of code space. When determining the memory space required, it is
important to characterize the size of the maximum run-time space utilization scenarios.

Finally, a specific recommendation on C&TS can be suggested. From the
information obtained on NASA’s evaluation of a large number of benchmark programs, it
appears that the compiler/linker for SSF is being chosen with minimum execution time
goals as the performance factor. If this is the case, it would be prudent to include the
software generation methodology a guide to code for minimum space utlization. The
overall discussion of the software generation methodology is the next topic.

2.2.33 Software Generation Methodology

During the process of software development, many moments will exit where the
programmers choice will greatly influence both the execution time and space utlization.
The extent that this process is optimized is directly related to the extent that the software
is developed under correct software engineering procedures. There have been many
successful projects that have met all of its requirements without rigorous or even crude
application of a software engineering methodology. These projects are often successful
only because the inefficiencies caused by improper coding procedures are camouflaged by
the expansion of memory, acceleration of the hardware components, or simply because of a
very permissive set of requirements. However, only a small percentage of software
systems developed have had the same level of space and execution time performance
requirements as have been imposed on the processing activities that support the C&TS of
the SSF. Hence, the conclusion is that the NASA contractors should follow a very

rigorous approach during the development of each and every piece of software.

It should be noted once again that the software design will need to minimize space
and maximize processing speed at each step of the process. In fact two separate
architectures could be developed at multiple points, with clear space/speed tradeoffs
evaluated at these times. The final design would most probably need to take advantage of
leverage situations where large gains in one direction, say less memory storage
requirements, yields only a small loss in the other direction, say slower execution. The
key to the design process is the knowledge of the existence of a trade-off and a quantified
measure of the improvements made to assess each situation. A great deal of prediction
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and benchmark measurement need to be made as the solution is coded into its final Ada
form. Each space improvement needs to be weighed against the speed cost. Only in this
way will the system” be simultaneously small enough to fit in the memory allocated, and
still have the execution time performance to meet the established requirements.

Overcoming this rigorous software generation problem is no easy task.
NASA and its contractors have established the required standards and directives. The
following is only a partial listing.

1) MIL-STD 2167

2) NASA SSSSD 30244

3) Software Product Assurance Plan - MDC-H4040

4) Software Management Plan - MDC H4058

5) Software Development Plan (Houston) - MDC-H4077

It is clear that there is no shortage of software methodologies, the only concemn is
in their application. The key is to be assured that the software development plans are
being followed, and they are not simply a paper generation activity, that finally stops once
the code development begins. The way that this can be accomplished most effectively
involves two basic steps.

The first step is to use a method to determine the contractor’s capacity to conform
to the software engineering development plans. It is not reasonable to simply assume this
is true, because most contractors who have been evaluated in this area fall short having the
required level of capacity. The Software Engineering Institute at Camegic Mellon
Umvcrsuy has developed a checklist method that can be used to compare software
engineering methods and procedures against an optimal set of software engineering

guidelines. This document contains a lengthy set of questions and is an excellent guide to
~assess the engineering software development capability of an entity. Normally, this
checklist would be used to prequalify a contractor who wishes to develop software for the
government. In this case, with the contracts and subcontracts already awarded, it is still
reasonable to request the assessment of the contractors to determine their software
engineering capablhues and to decide upon further actions to guide the development to

- Success.

The next step to successful software dcvclopment is a series of repeawd actions to
assure the software method is actually being used during software development. _This
requires cross refereince data such as verifying stability of the software managers of the
project, communications from the software quality assurance function, evaluation of the
software training programs first hand, attendance to formal management penodnc reviews,
and the list goes on. The point is to ask the contractor specific quesngps review specific

documents, and verify specific activities to independently measure what is happemng durmg
thc dcvclopment of the software :

The plan to complete this act1v1ty is the Verification & Validation Plan, MDC-
H4249. The Software Integtanon and Test Orgaruzgmon (SITO) of the McDonnell Douglas
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Space Systems Company, Spacc Station Division-Houston is responsible for carrymg out
the plan as an "independent" reviewer. It is not always within the government’s best
interest to have the same company do the IV&V that develops the software.

Since the SITO conducts formal tests and writes test reports which include test

. requirements, test management, test methods, test data requirements and acceptance criteria,

review of these reports would be invaluable to determine the effectiveness of SITO. A list
of some of the reports that should be obtained and reviewed includes:

- 1) SITO Verification Test and Analysis Reports.
2) SITO Review Item Discrepancy (RIDs).
3) SITO Discrepancy Reports (DRs).
4) SITO Reports on testing showing all anomalies.
5) SITO’s collection of the Test Description Sheets (TDS).
6) SITO’s review of deliverable documents.
7) SITO’s developed checklists of questions for specific Unit test
8) SITO’s developed checklist of questions for specific CSCs.
9) SITO’s developed checklist of questions for specific CSCls.
10) SITO’s developed checklist of questions for system acceptance.

Review of the SITO documentation, especially the checklists, should begin very
early in the program, because a weak IV&V program will result in a poor final product.
The cost to improve the final product, will be orders of magnitude greater than the cost to
provide proper IV&V.

2.2.3.4 Software Integration

A software integration plan is included in the Software Development procedures.
The specific implementation of integration plans for the SSF is described by Software
Engineering and Integration Plan, MDC H4421.

This part of the assessment is not intended to point out weaknesses or strengths in
that plan. The most important question that can be asked about the plan at this point, is
the same that was asked about the software development procedures, that being, is the plan
being used.

~~There is a tendency to believe that integration occurs as the final step of a
development. In fact, if the software integration does not begin before the code is
developed, it has begun too late.

SSF has multple contract services, with multiple agreements. In order to be
effective, integration requires a responsive, independent single point integrator, and a
completed test plan. The independence at this level refers to being independent of the
code developers, not of the company, as is recommended for [IV&V. However, this is not
the plan for the integration of the CMS CSCIs, CPA and LCA. There is involvement of
other organizations such as the Software Verification and Validation (SV&YV) group, the
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Systems Engineering organization, and the Software Product Assurance (SPA) group. The
outlined responsibilities state that, after the last build has been validated, software is turned

over to the System Engineering organization for C&TS integration testing and, in
conjunction with NASA acceptance testing.

The key documents that would be of interest to NASA are associated with the
integration test plan. The test plan must be formal, well developed, and available. The
Software Development Files (SDFs) are required to have the test requirements, test cases,
and test procedures for the test entity(ies), hence they should be available long before the
test reports. Reviewing the integration test plan would be a method of evaluation of the
integration process, before it actually begins. This allows a correction phase to occur if it
is determined that the integration process is not on the right track.

At this point, it can be stated that there are several subjective circumstances that
indicate integration may be a problem area. Some of these circumstances are: ’

1) Significant overhead time required for code revisions.
2) Test plans with TDB detailed specification, _

B

3) Lack of evidence of formal communication channels.
4) Significant errors in documentation and report.

2235

The last topic to be covered under software language is associated with the often
quoted SLOC/byte ratio. In an effort to determine storage requirements for the Ada code,
it has been determined that it is possible to estimate the lines of Ada code necessary for a
function. Having a ratio to convert the lines of code to bytes of memory would then
allow an estimate of required memory. Throughout this assessment, several values have
been discovered, and used by the contractor. These ranged from a reported low of 16 to a
high of 30. Since the compiler has not been chosen, it is obvious from the compiler data
in the section above, that the range is much greater than 16-30, and will probably be much
higher in the final analysis, T S

The difficulty in the search for a single ratio can be seen in the fact that there are
several external factors that also influence the ratio. These factors are:

1) DEFINITION OF A SLOC. This varies from the number of carriage returns
to the number of active semi-colons. Usually comments are not counted, but
vague references to the number of Ada statements can be off by a factor of 2
or more from another definition. S

2) RUNTIME OR STATIC STORAGE. Runtime storage is much harder to
determine than program level storage. Obviousl , the maximum runtime and
static ‘Storage is the requirement, but usually the static value is the only one
given in a study. The swing between these two can be very small or very
large depending on the program. e -
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3) OPERATING SYSTEM. The choice of operating system effects the storage

4)

5)

size, because the Ada code must interact with the operating system. The
differences here are usually smaller, but measurable.

NATURE OF CODE. If the code has a lot of data storage, a lot of 1/O, or
computational requirements, then the ratio of the Ada code to machine
language will be different for each case. The mix of each of these types in
the application code has a large affect on the ratio.

METHOD OF MEASURING SPACE. There are no established procedures,
just conventions used in circumstances, after assumptions are made. Using the
difference between the ADDRESS attribute of two labels is often used, but not
all implementations support the ADDRESS attribute. A different ratio would

result depending on the method used.

Combined, these external factors can be as significant to the swing in storage
space required as the choice in compiler or the way the code was developed. Essentially
the conclusion is that one should be very wary in applying a single ratio as the method of
predicting how much memory space will be required for a given situation.
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3.0 SYSTEM ASSESSMENT _

Once the available hardware and software documentation was collected and understood,
the assessment process was begun.- The first step in the actual assessment of the C&TS

was system definition, then development of an assessment methodology, followed by
formulation of assessment considerations.

3.1 System Definition

A system definition is necessary for establishment of a baseline from which to start
the assessment process. The baseline consists of the requirements by which the assessment
must judge the adequacy of the system and the system design which is to fulfill the
requirements.  Unfortunately, the SSF C&TS has changing requirements with a design
lagging in response to those requirements.

3.1.1 Baseline Configuration

SwRI personnel spent several weeks trying to establish firm requirements and a
corresponding C&TS design from the contractor documentation and JSC interviews.
Eventually, attempts to formulate a firm baseline configuration were abandoned when it
was realized that many aspects of the C&TS were constantly changing. This was a
significant decision with several negative consequences.

3.1.2 Consequences of 3 Variable Baseline

Since the requirements and design could not be defined, except in general terms,
most quantitative results would have minimal value. Due to system complexity and the
close interaction between subsystems, even the effect on numerical values could not be
estimated with any certainty. ' '

Because the documentation and other information lagged the C&TS change process,
the assessment process would always be behind. It was estimated that even the simplest
agreed-upon change required a minimum of two months before the corresponding directive
reached all concerned C&TS organizations. Time for implementing the change was never
considered.  Since it was observed that significant changes were occurring at a rate faster
than one change per two months it is possible the design never reflected actual system
plans at any point in time.

If true, any assessment based on changing requirements and a nonresponsive system
design would have minimal usefulness in meeting ‘the traditional goals of design
verification and optimization. On the other hand, such an assessment may be very useful
for drawing attention to potential problems and overlooked issues. '
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3.2 Assessment M olo

To perform thé assessment it was necessary to develop an assessment methodology.
This was also a primary goal of the C&TS assessment task. Any methodology developed
for the C&TS of the SSF was to be useful for other manned spacecraft. The initial project
plan described in Section 1.2 was the starting point for the evolution of the procedures that
eventually were used for the C&TS software assessment. The initial plan basically
described two features; data collection and a "two prong" approach to hardware and
software.

32.1 Data Collection

Since the SSF C&TS was an unknown to SwRI, data collection was the necessary
starting point. This would probably be the starting point for any similar assessment
performed by an outside organization. Once the data sources were identified, the data was
collected and reviewed for currentness and coherency. Only those data sources which were
both current and coherent were to be considered during an assessment. This was difficult
to do for the C&TS. Most documents dated prior to the C&TS PDR ( May 31, 1990)
were of questionable value, but in some cases they were the only data sources available.
At one point, a cut-off date of January 1990 was used in an attempt to limit the
assessment dependence on very outdated information. This did not prove successful since
many of the more recent document referenced older documents that were incomplete or
outdated. :

JSC personnel had asked that documentation holes and discrepancies be flagged
during the data review. This seemed possible early in the assessment, but as the
assessment progressed, it was apparent that the reviewers could not determine what was
correct, current, or accurate. This was the result of many factors, but the most serious was
the lack of good document control at JSC. There was no structured way at the JSC to
determine the currency of documents apparent to the SwRI assessment team.

3.2.2 Two Prong Approach

For the C&TS, it seemed that the software allocation should be addressed by
investigating the requirements and design for software scparatc from the requircments and
design for hardware and then to resolve the discrepancies between them. This was an
arbitrary approach which appeared to be as useful for performance of the assessment as
any other approach. Of course, the changing requirements and lagging design changes of
the C&TS may have masked the effects of one assessment method over another.

A series of assessment flow charts were developed in an attempt to provide a
methodology that might be useful on futre programs. The charts are shown in Figures 10
through 12. Figure 10 shows how a software allocation assessment might be performed if
the assessment was begun with the design process and system requirements were fixed for
the duration of the program. Figure 11 shows how a similar assessment might be
performed on a program where design was already begun, still with fixed design
requirements. Figure 12 is representative of the C&TS software allocation assessment, in
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that it attempts to show how an assessment might be performed on a system with design
started while design requirements are changing. Because of the many nested loops it is
obvious that the assessment process, as shown, could never proceed with design until the
requirements remained unchanged: °

3.3 Assessment Considerations

Once an assessment methodology was developed it was necessary to determine the
assessment factors that must be resolved to provide a practical software allocation. Since
the C&T System’s primary limited memory space for the necessary software, and data
throughput, the factors influencing these constraints were the main consideration of the
assessment.

3.3.1 Factors Influencing Memory Requirements

The factor most often considered in the C&TS software documentation was the size,
in bytes, of the code resident in the various ORU processors necessary to perform the C&T
functions. This seemed appropriate if code size could be determined to any level of
accuracy prior to writing the code. Most of the processor hardware memory capacities
were defined early in the program, so it was basically a question of whether the needed
software would fit within the planned memory.

Most attempts to determine the memory requirements for the code started by
estimating the source lines of code (SLOC). This estimated value was then multiplied by a
conversion number to give the memory size necessary to hold the compiled source code,
ancillary files, and other overhead. It was difficult estimating source code size for any
processor since the requirements, and implementing hardware were changing. It was even
more difficult to determine a realistic conversion factor when the compiler, source
language, and software methodology were all in question. As pointed out in section 2.2.3,
the compiler and software practices are as important in determining memory requirements
as the amount of source code.

Unfortunately, the conversion factors, could easily vary by an order of magnitude
and could not be determined to any better accuracy than that at this stage in the software
development process. This lack of a reasonably accurate method of determining code size
meant that all memory requirement estimates, done prior to coding, could easily be very
wrong.

3.3.2 Factors Influencing Throughput

Throughput estimates were more nebulous than the memory requirement estimates.
As pointed out in 2.1.2.2 the C&TS contractors had made several estimates of local bus
throughput, signal throughput, control response, and other time related performance
parameters. In most cases reviewed, the conclusions were presented without backup
material. And in the few instances where the material was presented, it appeared incorrect
or did not fit the present design scenario. The conclusions the contractors reached
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regarding throughput may or may not be correct. Insufficient information was available to
determine the validity of their estimates.

System throughput is influenced by all of the factors influencing compiled code size
as well as other factors such as processor speed, code complexity, and processing "bottle-
necks." All of these variables were so poorly defined at the time the assessment was in
progress, that no definitive statements could be made about the system throughput, except
that some potential problems were apparent to the SwRI assessment team.

3.3.3 OQther Factors

If all the factors mentioned in 3.3.1 and 3.3.2 were not enough, there are several
factors that may influence both the memory requirements and the system throughput. For
example, control of the software development process in areas other than coding techniques
could be important. Considerable improvement in memory requirements and throughput
might be possible from intersubsystem synergism resulting from careful control of software
integration between systems and subsystems. Other possible factors of importance are the
RODB overhead, impact of Commercial Off-The Shelf (COTS) software on the complete
system, and code structure (common software, priority handling, etc.). =
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4.0 CONCLUSIONS

Although the initial assessment goal of allocating the correct software to the available
processor resources was not met, several conclusions important to the C&TS development
program were reached and an assessment methodology for similar programs was developed.

4.1 Assessment Value Limited by Changing Baseline

[t became clear as the C&TS software assessment progressed, that the assessment
value was hampered by the lack of fixed system requirements and a changing design.
C&TS documentation was either incomplete or inaccurate because the contractors were
continuously revising the design in response to changing requirements. Despite the
contractors’ efforts, they were always behind the change process for the duration of the
software allocation assessment program.

4.2 Memory Requirements

The memory requirements were being influenced by the changing system requirements.
Since most design changes ("scrubs") resulted in reduced hardware or operational
requirements, the amount of software necessary to meet the requirements was reduced.
With each downsize of the system, the local bus throughput was of less concern and the
number of controllers to be addressed by the CMS was reduced. Even the eliminaton of
the second SDP from the C&TS design, which resulted in a net reduction in available .
memory, was balanced by a downsizing effect on the CMS software.

There was some concern that the software originally planned for the C&TS SDP may
not fit within available memory (4 Megabytes). If it can be realistically utilized, there is
more than enough expansion capability (to 32 Megabytes) to cover any software currently
planned. This seems to be a common situation for all the embedded processors/controllers.
With the exception of the C&TS SDP, there seems to be more than enough basic memory
hardware within each embedded processor/controller to cover anticipated software size.
But, as a precaution, expansion capability has been planned in most cases. Because of the
expansion capability and the way the processors have been integrated into the system
design, they are not easily limited in_memory capacity. The remaining concerns would be
the effect on throughput and the impact on the hardware design due to increased memory
(power, weight, etc.).

It is doubtful that any memory increase will be necessary if improvements in coding
practices and compiler efficiency are implemented. Nothing in any of the documents
indicated that there has been an attempt made to optimize the coding or compiling
efficiency. So, concern for exceeding available memory space is prudent, but probably
premature at this time.

4.3 Throughput

As mentioned in 2.1.2.2 very little can be said about the true signal or command
throughput for any part of the C&TS until the software development is further along. But,
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there are a number of potential problcrﬁ:sﬁfhét ‘should be carefully watched during the
software development process. These include prioritization of tasks, timing between
concurrent tasks, and local bus limitations.

It was noted in some of the compiler data from sources outside the C&TS design
program that the priority assigned to various activities within real time software does not
always result in the code execution sequence planned by the programmer. Unless careful
tests of all prioritization schemes are performed after each source code compilation, there is

the possibility that the prioritized tasks will not be performed within planned limits.

If flaws occur in the priority structures, this could cause problems with the timing
requirements between concurrent tasks performed on the same or independent processors.
Timing is also a critical factor for data and control messages on the local bus. There must
be complete understanding between the various users of the bus so that proper
interpretation of all timing parameters and requirements is made. This is a critical
integration factor that can only be adequately handled by careful control of integration
issues during the entire software development process.

44 System Flexibility L | o

Despite all the pitfalls, the basic design of the C&TS appears to have enough inherent
flexibility to expand or contract in any direction. Without this flexibility, the probability of
failing to meet the finally established requirements would be high. Although the system
design may be flexible enough to cover contingencies, if this flexibility is used, completion
of the system will cost more and take longer than planned. The flexibility will be best
used if there are careful integration control and good channels of information exchange
between requirements managers, designers, and design implementers.
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5.0 RECOMMENDATIONS

Some recommendations have resulted from the assessment process that may be of
value to the C&TS design effort.” These recommendations are briefly described in the
following paragraphs.

5.1 Common Controller Softw

One common feature of the ORU embedded controllers was that all controllers
performed several basic functions in addition to unique ORU functions. These basic
functions are presently being addressed independently by three C&TS subcontractors. It
would seem that a common software module could be developed to handle these similar
functions for all embedded controllers. The ORU specific applications software could then
be added to this common CSCI prior to compilation for the firmware. This has two
advantages. The software has to be developed only once and any necessary debugging
fixes all controllers. It has an additional advantage in that it gives the subcontractors an
opportunity to communicate on a topic of mutual benefit.

5.2 Reduce Controller Hardware

Another observation was that the need for an embedded controller in each ORU is not
clear. No reference was found in the documentation explaining why a particular ORU
required an embedded controller. Also, most embedded controllers seemed to have some
underutilized features (mostly excessive ROM).

With the exception of the video subsystem, most ORUs of the C&TS have embedded
controllers. In some cases, such as the antenna controller for the Space to Ground
Subsystem, this limits the ability of the antenna controller to influence the operation of the
receiver/transmitter, making antenna control more complicated than necessary. If the
controller in the Space to Ground Transmitter-Receiver (SGT-R) were replaced by
hardwired control from the Space to Ground Antenna Controller (SGAC) this might
simplify Space to Ground Subsystem (SGS) operation and reduce hardware (less weight
and power). This same scheme may be possible with other C&T ORUs such as the
Assembly/Contingency Baseband Signal Processor (ACBSP) and the Assembly/ Contingency
Transmit/Receive Amplifier (ACTRA), or between the Space to Ground High Rate
Multiplexer (SG HRM) and the Space to Ground IF Switch (SGIFS). A trade study
should be performed for all C&T ORUs to determine if hardwired control from a
collocated ORU is beneficial to the overall C&TS design.

5.3 Establish Better Communication

The last and probably the most important recommendation is to improve the
communication between all parties involved in software and hardware development for the
C&TS. The poor state of the documentation led SwRI to believe that any current
information related to the C&TS design must occur through informal discussions or
messages. Presently, there does not appear to be sufficient technical interchange between
contractors and NASA personnel to allow for efficient integration of all system
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components. As a result, there is a large time lag between official design changes and
implementation of those changes by the various contractors. The work done during the
time lag is probably non-productive. There must be some organization actively expediting
this interchange of information as part of the integration process. Without close
communications between technical organizations responsible for the C&TS design the
integration of the various elements and subsystems has little chance for success.
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REVISED ASSESSMENT PLAN
FOR

Research in Software Allocation
for Communications Tracking and Antennas
for Advanced Manned Missions
SwRI Project No. 05-3668

November 30, 1990

1.0 INTRODUCTION

This final revision of the preliminary assessment plan is intended as a general plan for
the conduct of a software resources allocation study. The effort which produced this plan
was a study of the software allocation problems associated with any communications and
tracking system designed for manned spacecraft. The Communications and Tracking
System of the Space Staton Freedom was used as a test case and was the source for the
methodology presented here.

2.0 PERTINENT DOCUMENTS COLLECTED
See Appendix B of the Final Report.
2.1 Project Plan Initial Task Descriptions
22 Task | - Inj;igl Meeting/Present Data Collection Plan

Hold an initial meeting to present data collection plans, present this initial assessment
plan, and discuss various program activities.

2.3 Task 2 - Develop Assessment Methodology

Develop a detailed rassessmcnt methodology by expanding this plan. The final plan
should include feedback from NASA regarding the assessment plan, data collection
arrangements, and details concerning the assessment methodology.

24 Task 3 - Collect Data

Collect all pemncnt current information concerning the software and processing
hardware under consideration and perform the following:

- Generate a summary of preliminary findings resulting from the data collection
task
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- Submit a draft plan for continuation of the resource assessment for NASA review
and comment

- Perform the assessment upon NASA approval of the plan
2.5 Task 4 - Perform Assessment
Review and assess all collected data with the following primary objectives:

25.1

Identify all system processors (firnware and software controlled) and the following
parameters:

- Architecture (bus structure, etc.)
- Memory size

- Execution Speed

- Resident CSCIs

- Throughput

25.2

Identify all system software and firmware and the following characteristics of each
CSCIL:
- Time & size requirements
- Function
- Host processor
- Programing language

253
Develop an understanding of all software CSClIs including :
- Software approach

- Interfaces to other CSClIs
- Alternate software approaches

254
Verify that planned software can be accommodated using planned hardware by:
- Matching contractor supplied software descriptions with requirements documents

- Checking the Time and Size requirements of each CSCI against actual available
hardware and hardware architecture.
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If the software and hardware are adequate, verify that the system requirements have

not changed. If the software ‘and hardware are inadequate, proceed as described in
paragraph 2.4.7.

2.5.6

If the system requirements have not changed, conclude the assessment. If changes
have occurred, proceed as described in paragraph 2.4.8.

25.7

If the conclusion reached in paragraph 2.4.5 is that the resources are not adequate,
determine if they can be changed. If not, revise the requirements and proceed as described
in paragraph 2.4.2. If the hardware and software can be changed, recommend the
necessary changes and proceed as described in paragraph 2.4.6.

2.5.8

Determine the impact of any new requirements on existing hardware and software
resources, then postulate new hardware and software designs. Proceed as described in
paragraph 2.4.2,

2.6. Task 5 - Oral Presentation

After completion of Tasks 1 through 4 deliver an oral _presentation summarizing the
results of the assessment to cognizant NASA personnel. The presentation will be at a time
and location proposed by the assessment organization and agreed to by NASA.

2.7 Task 6 - Prepare Final Report

Prepare a final report as described by the contract and the final assessment plan.
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APPENDIX B

COMMUNICATIONS AND TRACKING DOCUMENTATION
RECEIVED BY SwRI FROM NASA/JSC

GENERAL DOCUMENTS

Document Title

Verification & Validation Plan
(MDSSC-SSD-Houston), MDC H4249
April 1990, Resubmittal 1

Contract NAS 9-18200, Software Test Plan
(C&TS Firmware-Motorola), Work Package
No. 2 (WP-2), (DR SY-36.1), May 1990

Contract NAS 9-18200, Software Develop-
ment Plan (GE), Appendix II, Work Package
No. 2 (WP-2), (DR SY-26.1), May 1990

Contract NAS 9-18200, Software Develop-
ment Plan (GE), Appendix I, Work Pack-

age No. 2 (WP-2), (DR SY-26.1), May 1990

Contract NAS 9-18200, Software Verifi-
cation & Validation Plan (G.E.),
Appendix I, Work Package No. 2 (WP-2),
(DR SY-42.1), May 1990

Space Station Software Standards Docu-
ment, JSC 30244, version 3.0, September
19, 1986

Contract End Item Specification for Communi-

cations and Tracking System (C&TS),
(DR §Y-06.1), May 1990

Software Estimates and the Bilateral
Agreement, July 3, 1990

Contract NAS 9-18200, Software Engineering

& Integration Plan (C&TS-Control and Monitor

Subsystem), (DR SY-29.1), November 1989
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Originator

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

Johnson Space Center

MDSSC Space Station Div.

NASA

MDSSC Space Station Div.
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- GENERAL DOCUMENTS (Cont’d)

Document Title

Interface Requirements Document (Software)

(DMS MIL-STD-1553B Local Bus),
(DR SY-23.1), August 1990

Contract NAS 9-18200, Software Management

Plan, (DR SY-03.1), July 1990

Software Process for Space Shuttle Primary
Avionics Software System and Support
Software, October 11, 1990

Space Station Communications & Tracking

System (SS CTS), Bl Prime Item Development
Specification Control and Monitor Subsystem,

September 1990

User’s Guide (C&T Control &
Monitor/Orbital Replacement Unit
Simulator), GE SY-40-002-STI,
May 1990

Software Preliminary Design Document
(C&TS Control & Monitor Orbital
Replaceable Unit Simulator,

GE SY-28-003-STI, May 1990

Systems Engineering and Integration Trade
Studies - ORU Pressurization, SY-01.3-013,
May 1990

Processor Resource Allocation Document
(DR SY-24.1), MDC H4372,
September 1989

Processor Resource Allocation Document
(DR SY-24.1), MDC H4372,
Resubmittal 2, May 1990

Block Update to C&T Architectural Control
Document, SSP 30260, November 21, 1989

B-2

QOriginator

MDSSC Space Station Div.

MDSSC Space Station Div,

IBM

GE Aerospace
MDSSC Space Station Div.
MDSSC Space Station Div.

MDSSC Space Station Div.
MDSSC Space Station Div.
MDSSC Space Station Div.

MDSSC Space Station Div.



GENERAL DOCUMENTS (Cont’d)

Document Title

Contract NAS 9-18200, Interface Development
Document (Communications & Tracking System
Standard Interfaces) IDD 2CT00001, Work
Package No. 2 (WP-2), (DR SY-49.1),

April 1990

Space Station Freedom Program
Communications and Tracking System,
Systems Engineering and Integration Trade
Studies Control and Monitor Subsystem
Architecture Options for Phase Assembly
Sequence, SY-01.3-015, 31 May 1990

Electromagnetic, Plasma and Ionizing
Radiation Effects Control Plan,

(DR S§Y-17.1), Doc. #5Y-17.1-002,
September 1989

Evaluation of the Lynxos Kemal
Job Order 34-L10, LESC-28013, March 1990

Justification for the SpachSrtation
BSPE Software Development Environment,
PDRD-003S, January 1990

Justification for the Space Station BSPE
Software Development Environment, DPB-003
January 1990

Critical Items List (CIL) for Communications
and Tracking System, MDC H4918, May 1990

Component AS-Designed EEE (Electrical,
Electronic, and Electromechanical)
Parts List, GE SA-10-001, April 12, 1990

Processor Resource Allocation Document,
MDC H4372, Resubmittal #1, December 1989
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Originator

MDSSC Space Station Div.

GE Aecrospace

MDSSC Space Station Div.

NASA, Lockheed Engineering

and Sciences Company

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.
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~ .. GENERAL DOCUMENTS (Cont’d)

Document Title Originator

Preliminary, Radio Frequency Interface MDSSC Space Station Div.
Control Document Between the Space Station

Freedom Project and the Tracking and Data

Relay Satellite System, SSP 42018,

April 30, 1990

Communications and Tracking System GE Aerospace
Subsystem Design Review, November 13-
17, 1989 (Briefing viewgraphs)

Contract End Item Specification for Communi- MDSSC Space Station Div.
cation and Tracking System (C&TS),
SP-M-002, May 1990

SRU Design Document for the Embedded MDSSC Space Station Div.
Controller, 562-SSF-SGVBSP-061,

January 1990

Processor Resource Allocation Document MDSSC Space Station Div.

dated May 1990, MDC H4372

Space Station C&T System Preliminary MDSSC Space Station Div.
Design Review Summary Presentation

Day 1 only (5 day PDR), May 30,

1990

Space Station C&T Systém Preliminary MDSSC Space Station Div.
Design Review Summary Presentation

Day 2 only (5 day PDR), May 30,

1990

(Day 5 Only) Space Station C&T System MDSSC Space Station Div.

Preliminary Design Review Summary
Presentation May 30 to June 5, 1990
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SPACE-TO-SPACE SUBSYSTEM DOCUMENTS

Document Title

Software Requirements Specification
(C&T SSS Modem), Spec No. 10033264,
March 1990

Software Requirements Specification
(C&T - SSS Video Bandband Signal
Processor), Spec. No. 10033494,
March 1990

Software Requirements Specification
(C&T - SSS Transmitter - Receiver),
Spec. No. 10033265, March 1990

Software Requirements Specification
(C&T SSS IF Switch), Spec No. 10033262,
March 1990

Originator _

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

SPACE-TO-GROUND SUBSYSTEM DOCUMENTS

Document Title

Software Requirements Specification
(C&T - SGS Video Baseband Signal
Processor), Spec. No. 10033269,
March 1990

Contract NAS 9-18200, Software Require-
ments Specification (C&TS Firmware-SGS
Antenna Controller), Work Package No. 2
(WP-2), (DR SY-34.1), May 1990

SRU Electrical Design Document for
the Digital Video Switch of the
Space-to-Ground Video Baseband

Signal Processor, 562-SSF-SGVBSP-051,
February 1990

SRU Electrical Design Document for the
Video Input Formatter of the Space-to-
Ground Video Baseband Signal Processor,
562-SSF-SGVBSP-041, February 1990
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Originator

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

@ & w8 4] 1 u i 4u 81 & R | {

LT



{

SPACE-TO-GROUND SUBSYSTEM DOCUMENTS (Cont’d)

Document Title

Configuration Item Interconnection
Definition Document for the Space-to-

-Ground Video Baseband Signal Processor,

562-SSF-SGVBSP-005, February 1989

Software Preliminary Design Document for
the Space-to-Ground Baseband Signal
Processor, Preliminary, DPB-001,

January 1990

Ground Baseband Signal Processor (SGBSP),
Preliminary, DPB-004, January 1990

Software Requirements Specification
(C&T SGS Transmitter - Receiver),
Spec. No. 10033273, March 1990

SGBSP Analysis, SSP-021, October 1989

Software Requirements Specification
(C&T - SGS IF Switch), Spec. No. 10033272,
March 1990

SRU Electrical Design Document for the Bite
& Sync Detector of the Space-to-Ground
Video Baseband Signal Processor,
562-SSF-SGVBSP-071, February 1990

SRU Electrical Design Document for the
Video A/D Converter of the Space-to-
Ground Video Signal Processor,
562-SSF-SGVBSP-011, February 1989

Lower Level Configuration Item
Specification - Space-to-Ground Subsystem,
Prelim-2, 10032303, April 1990

SRU Electrical Design Document for the
Video Output Formatter of the Space-to-
Ground Video Baseband Signal Processor,
562-SSF-SGVBSP-031
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Qriginator

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.



SPACE-TO-GROUND SUBSYSTEM DOCUMENTS (Cont’d)

Document Title
Lower Level Configuration Item Specifi-
cation - Video Baseband Signal Processor
Type 1, 2, 10033040, April 1990

SGS Antenna Group Type I & 10,
RML-009-89-101, December 1989

High Rate Modem (HRM), Preliminary,
DPB-008, January 1990

Critical Item Allocation & Partitioning

Document for the Space-to-Ground Baseband

Signal Processor, 562-SSF-SGVBSP-002,
February 1989

Lower Level Configuration Item Specification-

Space-to-Ground Subsystem, Prelim-2,
(DR §Y-06.2), 10032303, April 1990

Qriginator

MDSSC Space Station Div.

MDSSC Space Station Div.
MDSSC Space Station Div.

MDSSC Space Station Div.

- MDSSC Space Station Div.

VIDEO SUBSYSTEM DOCUMENTS

Document Title

Software Requirements Specification
(C&T Video Switch, Spec. No. 10033706,
March 1990

SRU Electrical Design Document for the
Crosspoint Switch Matrix (CSM) of the
Video Switch, 562-SSF-VSW-021,
February 1990

Video Subsystem Support Documentation-
Integration and Standardization Bulletin --
#1, SS/C&T-561-IC-1742B, October 1989

Lower Level Configuration Item Spééif'i-

cation- Pan Tilt Unit (PTU), 10033023,
April 1990
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Originator

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.
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VIDEO SUBSYSTEM DOCUMENTS (Cont’d)

Document Title

Allocation & Partitioning Document for the
Television Camera Interface Converter of
the External Color TV Camera Group,
562-SSF-TVCIC-002, February 1989

Lower Level Configuration Item
Specification-Source Control Drawing
Color TV Camera, 10033497, April 1990

SRU Electrical Design Document for the
PFM Modulator/PFM Demodulator Fiber
Optic Transmitter and Fiber Optic
Receiver of the Video Switch,
562-SSF-VSW-051, February 1990

Critical Item Interconnection Definition
Document for the Video Switch,
562-SSF-VSW-005, February 1990

SRU Electrical Design Document for the
Data Stripper Board (DSB) of the Video
Switch, 562-SSF-VSW-041, February 1990

SRU Electrical Design Document for the
Sync/Control/Bite (SCB) Board of the
Video Switch, 562-SSF-VSW-011,
February 1990

Lower Level Configuration Item Specification
-TV Camera Interface Converter, 10033125,
April 1990

SRU Electrical Design Document for the
Basic Signal Generator (BSG) of the
Video Switch, 562-SSF-VSW-031,
February 1990

Critical Item Allocations and Partitioning
Document Video Subsystem Video Switch,
562-SSF-VSW-002, February 1990

Originator

MDSSC Space Station Div.,

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSCC Space Station Div.
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VIDEO SUBSYSTEM DOCUMENTS (Cont’d)

Document Title Originator
Lower Level Configuration Item MDSSC Space Station Div.
Specification Video Switch, 10033705,
May 1990
SRU Electrical Design Document for the MDSSC Space Station Div.

Built-In Test Board of the Television
Camera Interface Converter,
562-SSF-TVCIC-011, February 1989

Lower Level Configuration Item Specification MDSSC Spacersrtatiion Div.

-Video Subsystem Fiber Optic Transmitter
and Fiber Optic Receiver, 10033031, May 1990 __

Lower Level Configuration Item Specification MDSSC Space Station Div.
-External TV Camera Group, 10033124, L ,
April 1990

Lower Level Configuration Item Specification MDSSC Space Station Div.

-Video Subsystem PFM Modulator and PFM -
Demodulation, Prelim-O, 10033047, May 1990

CONTROL & MONITOR SUBSYSTEM DOCUMENTS

Document Title Originator
Coi{’tfigﬁ;agon Item Development Specifica- | MISSSC Sﬁécc Station Div.

tion for the Embedded Data Processor,
(DR SY-06.2), MDC H4534
November 1989

Configuration Item Development Speci- MDSSC Space Station Div.

fication for the Bus Network Interface
Unit, Work Package No. 2 (WP-2),
(DR SY-06.2), November 1989

Configuration Item (CI) Specification NASA

for Standard Data Processor (DR SY-06.2),
152A401-PT1A, May 1990
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CONTROL & MONITOR SUBSYSTEM DOCUMENTS

Document Title

Interface Requirements Document (Software)
(C&TS - Control & Monitor Processor
Application), Resubmittal, MDC H4418,
May 1990

Interface Requirements Document (Software)
Appendix I - Interface Control Document
(C&TS - Local Controller Application)

DR SY-23.1, MDC H4417, May 1990

Interface Requirements Document (Software)
(C&TS - Local Controller Application)
DR SY-23.1, MDC H4417, May 1990

Interface Requirements Document (Software),
Appendix I - Interface Control Document,
(C&TS - Local Controller Application),

DR SY-23.1, MDC H4417, Appendix I,
May 1990

Software Requirements Specification
(C&T - Control & Monitor Processor
Application), MDC H4416, May 1990

Software Requirements Specification

(C&T - Control & Monitor/Orbital
Replacement Unit Simulator), MDC H4524,
May 1990

Software Requirements Specification
(C&T - Local Controller Application),
MDC H4415, May 1990

Software Prelinminary Design Document
(C&TS Control & Monitor Processor
Application), GE SY-33-001A, May 1990

Software Preliminary Design Document

(C&TS Local Controller Application),
SY-33-002, May 1990
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iginator

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.

MDSSC Space Station Div.



DATA MANAGEMENT SYSTEM DOCUMENTS

Document Title

Runtime Object Database (RODB) Sizing
White Paper, July 20, 1990, David E. Bolon

Software Requirements Specification
(DMS Standard Services) (DR SY-34.1),
August 1990

Software Detailed Design Document (Data
Management System Standard Services),
(DR SY-28.1), September 1990

Software Preliminary Design Document
(DMS Operating System/ADA Run Time
Environment, DR SY-33.1), June 1990

Space Station Program Data Management
System,Systems Engineering And Integration
Trade Studies DMS Performance Analysis
Summary White Paper, Contract No. 87916006,
DR SY-01.31, July 31, 1990

DMS Performance, September 26, 1990

Architectural Control Document Data
Management System Section 2: Operations
Management System, Revision C, SSP 30261
Sec. 2, December 15, 1989

Configuration Item (CI) Specification for
Mass Storage Unit, MDC H4686,
(DR §Y-06.2), March 1990

Contract NAS 9-18200, Data Management
System to Communications and Tracking
System Interface Development Document,
Work Package No. 2, (WP-2), March 1990

Configaration Ttem (CI) 7s:pcciﬁcation

for Mass Storage Unit, (DR SY-06.2),
Spec. #153A101, FSCM #18355, March 1990
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Originator

International Business
Machines Corp.

MDSSC Space Station Div.

NASA

NASA

IBM

IBM

NASA = .

MDSSC Space Station Div.

MDSSC Space Station Div.

* MDSSC Space Station Div.
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DATA MANAGEMENT SYSTEM DOCUMENTS (Cont’d)

Document Title

Forward Error Correction for Transferred
Data Frames, SSP-95, November 1989

Data Management System (DMS)
S/W Orientation Handbook

Data Management System (DMS)
H/W Orientation Handbook

EXCERPT from Summary Presentation
DMS PDR No. 3 Day 1 April 17, 1990,
MDC H4866

Configuration Item Development Specification
for the Bus Network Interface Unit,
DR §Y-06.2, MDC H4533, November 1989

Users Guide (Software), Data Management
System (IBM), DR SY-40.1, MDC H4542,
December 1989

Critical Item Development Specification
for the Standard Data Processor,
88IBMX0069-RC, June 16, 1989

Qriginator

MDSSC Space Station Div.
MDSSC Space Station Div.
MDSSC Space Station Div.

MDSSC Space Station Div.
MDSSC Space Station Div.
MDSSC Space Station Div.

MDSSC Space Station Div.

UHF SUBSYSTEM DOCUMENTS

Document Title

Lower Level Configuration Item Specifi-
cation - UHF Communications Subsystem,
Draft-1, 10033487, April 1990
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Originator

MDSSC Space Station Div.



ASSEMBLY/CONTINGENCY SUBSYSTEM DOCUMENTS

i ,,Do’cufnen; Title Originator
Lower Level Configuration Item MDSSC Space Station Div.

Specification-Assembly/Contingency
Baseband Signal Processor (ACBSP),
10032331, January 1990

Section 4.0 of the Software Requirements MDSSC Space Station Div.

Specification for the Standard TDRSS
Transponder, Preliminary, DPB-007,

January 1990 - B
TRACKING SUBSYSTEM DOCUMENTS
Document Title Originator
Space Station Freedom Program Radio MDSSC Space Station Div,

Frequency Interface Control Document,
Space Station Freedom Project to Global
Positioning System (SSP 42017), June 1990
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